PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/usr/share/emacs/26.1/lisp/calc/
Upload File :
Current File : //usr/share/emacs/26.1/lisp/calc/calc-rules.elc
;ELC
;;; Compiled
;;; in Emacs version 26.1
;;; with all optimizations.

;;; This file uses dynamic docstrings, first added in Emacs 19.29.

;;; This file does not contain utf-8 non-ASCII characters,
;;; and so can be loaded in Emacs versions earlier than 23.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;


(byte-code "\300\301!\210\300\302!\207" [require calc-ext calc-macs] 2)
(defalias 'calc-compile-rule-set #[(name rules) "\302\303\"\210\304	\305\"\302\306\"\210\207" [name rules message "Preparing rule set %s..." math-read-plain-expr t "Preparing rule set %s...done"] 4])
#@14 CommuteRules
(defalias 'calc-CommuteRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "CommuteRules" "[\niterations(1),\nselect(plain(a + b))		:=  select(plain(b + a)),\nselect(plain(a - b))		:=  select(plain((-b) + a)),\nselect(plain((1/a) * b))	:=  select(b / a),\nselect(plain(a * b))		:=  select(b * a),\nselect((1/a) / b)		:=  select((1/b) / a),\nselect(a / b)			:=  select((1/b) * a),\nselect((a^b) ^ c)		:=  select((a^c) ^ b),\nselect(log(a, b))		:=  select(1 / log(b, a)),\nselect(plain(a && b))		:=  select(b && a),\nselect(plain(a || b))		:=  select(b || a),\nselect(plain(a = b))		:=  select(b = a),\nselect(plain(a != b))		:=  select(b != a),\nselect(a < b)			:=  select(b > a),\nselect(a > b)			:=  select(b < a),\nselect(a <= b)			:=  select(b >= a),\nselect(a >= b)			:=  select(b <= a) ]"] 3 (#$ . 682)])
#@11 JumpRules
(defalias 'calc-JumpRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "JumpRules" "[\niterations(1),\nplain(select(x) = y)		:=  0 = select(-x) + y,\nplain(a + select(x) = y)	:=  a = select(-x) + y,\nplain(a - select(x) = y)	:=  a = select(x) + y,\nplain(select(x) + a = y)	:=  a = select(-x) + y,\nplain(a * select(x) = y)	:=  a = y / select(x),\nplain(a / select(x) = y)	:=  a = select(x) * y,\nplain(select(x) / a = y)	:=  1/a = y / select(x),\nplain(a ^ select(2) = y)	:=  a = select(sqrt(y)),\nplain(a ^ select(x) = y)	:=  a = y ^ select(1/x),\nplain(select(x) ^ a = y)	:=  a = log(y, select(x)),\nplain(log(a, select(x)) = y)	:=  a = select(x) ^ y,\nplain(log(select(x), a) = y)	:=  a = select(x) ^ (1/y),\nplain(y = select(x))		:=  y - select(x) = 0,\nplain(y = a + select(x))	:=  y - select(x) = a,\nplain(y = a - select(x))	:=  y + select(x) = a,\nplain(y = select(x) + a)	:=  y - select(x) = a,\nplain(y = a * select(x))	:=  y / select(x) = a,\nplain(y = a / select(x))	:=  y * select(x) = a,\nplain(y = select(x) / a)	:=  y / select(x) = 1/a,\nplain(y = a ^ select(2))	:=  select(sqrt(y)) = a,\nplain(y = a ^ select(x))	:=  y ^ select(1/x) = a,\nplain(y = select(x) ^ a)	:=  log(y, select(x)) = a,\nplain(y = log(a, select(x)))	:=  select(x) ^ y = a,\nplain(y = log(select(x), a))	:=  select(x) ^ (1/y) = a ]"] 3 (#$ . 1515)])
#@14 DistribRules
(defalias 'calc-DistribRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "DistribRules" "[\niterations(1),\nx * select(a + b)		:=  x*select(a) + x*b,\nx * select(sum(a,b,c,d))	:=  sum(x*select(a),b,c,d),\nx / select(a + b)		:=  1 / (select(a)/x + b/x),\nselect(a + b) / x		:=  select(a)/x + b/x,\nsum(select(a),b,c,d) / x	:=  sum(select(a)/x,b,c,d),\nx ^ select(a + b)		:=  x^select(a) * x^b,\nx ^ select(sum(a,b,c,d))	:=  prod(x^select(a),b,c,d),\nx ^ select(a * b)		:=  (x^a)^select(b),\nx ^ select(a / b)		:=  (x^a)^select(1/b),\nselect(a + b) ^ n		:=  select(x)\n				    :: integer(n) :: n >= 2\n				    :: let(x, expandpow(a+b,n))\n				    :: quote(matches(x,y+z)),\nselect(a + b) ^ x		:=  a*select(a+b)^(x-1) + b*select(a+b)^(x-1),\nselect(a * b) ^ x		:=  a^x * select(b)^x,\nselect(prod(a,b,c,d)) ^ x	:=  prod(select(a)^x,b,c,d),\nselect(a / b) ^ x		:=  select(a)^x / b^x,\nselect(- a) ^ x			:=  (-1)^x * select(a)^x,\nplain(-select(a + b))		:=  select(-a) - b,\nplain(-select(sum(a,b,c,d)))    :=  sum(select(-a),b,c,d),\nplain(-select(a * b))	        :=  select(-a) * b,\nplain(-select(a / b))	        :=  select(-a) / b,\nsqrt(select(a * b))		:=  sqrt(select(a)) * sqrt(b),\nsqrt(select(prod(a,b,c,d)))	:=  prod(sqrt(select(a)),b,c,d),\nsqrt(select(a / b))		:=  sqrt(select(a)) / sqrt(b),\nsqrt(select(- a))		:=  sqrt(-1) sqrt(select(a)),\nexp(select(a + b))		:=  exp(select(a)) / exp(-b) :: negative(b),\nexp(select(a + b))		:=  exp(select(a)) * exp(b),\nexp(select(sum(a,b,c,d)))	:=  prod(exp(select(a)),b,c,d),\nexp(select(a * b))		:=  exp(select(a)) ^ b :: constant(b),\nexp(select(a * b))		:=  exp(select(a)) ^ b,\nexp(select(a / b))		:=  exp(select(a)) ^ (1/b),\nln(select(a * b))		:=  ln(select(a)) + ln(b),\nln(select(prod(a,b,c,d)))	:=  sum(ln(select(a)),b,c,d),\nln(select(a / b))		:=  ln(select(a)) - ln(b),\nln(select(a ^ b))		:=  ln(select(a)) * b,\nlog10(select(a * b))		:=  log10(select(a)) + log10(b),\nlog10(select(prod(a,b,c,d)))	:=  sum(log10(select(a)),b,c,d),\nlog10(select(a / b))		:=  log10(select(a)) - log10(b),\nlog10(select(a ^ b))		:=  log10(select(a)) * b,\nlog(select(a * b), x)		:=  log(select(a), x) + log(b,x),\nlog(select(prod(a,b,c,d)),x)	:=  sum(log(select(a),x),b,c,d),\nlog(select(a / b), x)		:=  log(select(a), x) - log(b,x),\nlog(select(a ^ b), x)		:=  log(select(a), x) * b,\nlog(a, select(b))		:=  ln(a) / select(ln(b)),\nsin(select(a + b))		:=  sin(select(a)) cos(b) + cos(a) sin(b),\nsin(select(2 a))		:=  2 sin(select(a)) cos(a),\nsin(select(n a))		:=  2sin((n-1) select(a)) cos(a) - sin((n-2) a)\n				    :: integer(n) :: n > 2,\ncos(select(a + b))		:=  cos(select(a)) cos(b) - sin(a) sin(b),\ncos(select(2 a))		:=  2 cos(select(a))^2 - 1,\ncos(select(n a))		:=  2cos((n-1) select(a)) cos(a) - cos((n-2) a)\n				    :: integer(n) :: n > 2,\ntan(select(a + b))		:=  (tan(select(a)) + tan(b)) /\n				    (1 - tan(a) tan(b)),\ntan(select(2 a))		:=  2 tan(select(a)) / (1 - tan(a)^2),\ntan(select(n a))		:=  (tan((n-1) select(a)) + tan(a)) /\n				    (1 - tan((n-1) a) tan(a))\n				    :: integer(n) :: n > 2,\ncot(select(a + b))		:=  (cot(select(a)) cot(b) - 1) /\n				    (cot(a) + cot(b)),\nsinh(select(a + b))		:=  sinh(select(a)) cosh(b) + cosh(a) sinh(b),\ncosh(select(a + b))		:=  cosh(select(a)) cosh(b) + sinh(a) sinh(b),\ntanh(select(a + b))		:=  (tanh(select(a)) + tanh(b)) /\n				    (1 + tanh(a) tanh(b)),\ncoth(select(a + b))		:=  (coth(select(a)) coth(b) + 1) /\n				    (coth(a) + coth(b)),\nx && select(a || b)		:=  (x && select(a)) || (x && b),\nselect(a || b) && x		:=  (select(a) && x) || (b && x),\n! select(a && b)		:=  (!a) || (!b),\n! select(a || b)		:=  (!a) && (!b) ]"] 3 (#$ . 2874)])
#@12 MergeRules
(defalias 'calc-MergeRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "MergeRules" "[\niterations(1),\n (x*opt(a)) + select(x*b)	:=  x * (a + select(b)),\n (x*opt(a)) - select(x*b)	:=  x * (a - select(b)),\nsum(select(x)*a,b,c,d)		:=  x * sum(select(a),b,c,d),\n (a/x) + select(b/x)		:=  (a + select(b)) / x,\n (a/x) - select(b/x)		:=  (a - select(b)) / x,\nsum(a/select(x),b,c,d)		:=  sum(select(a),b,c,d) / x,\n (a/opt(b)) + select(c/d)	:=  ((select(a)*d) + (b*c)) / (b*d),\n (a/opt(b)) - select(c/d)	:=  ((select(a)*d) - (b*c)) / (b*d),\n (x^opt(a)) * select(x^b)	:=  x ^ (a + select(b)),\n (x^opt(a)) / select(x^b)	:=  x ^ (a - select(b)),\nselect(x^a) / (x^opt(b))	:=  x ^ (select(a) - b),\nprod(select(x)^a,b,c,d)		:=  x ^ sum(select(a),b,c,d),\nselect(x^a) / (x^opt(b))	:=  x ^ (select(a) - b),\n (a^x) * select(b^x)		:=  select((a * b) ^x),\n (a^x) / select(b^x)		:=  select((b / b) ^ x),\nselect(a^x) / (b^x)		:=  select((a / b) ^ x),\nprod(a^select(x),b,c,d)		:=  select(prod(a,b,c,d) ^ x),\n (a^x) * select(b^y)		:=  select((a * b^(y-x)) ^x),\n (a^x) / select(b^y)		:=  select((b / b^(y-x)) ^ x),\nselect(a^x) / (b^y)		:=  select((a / b^(y-x)) ^ x),\nselect(x^a) ^ b			:=  x ^ select(a * b),\n (x^a) ^ select(b)		:=  x ^ select(a * b),\nselect(sqrt(a)) ^ b		:=  select(a ^ (b / 2)),\nsqrt(a) ^ select(b)		:=  select(a ^ (b / 2)),\nsqrt(select(a) ^ b)		:=  select(a ^ (b / 2)),\nsqrt(a ^ select(b))		:=  select(a ^ (b / 2)),\nsqrt(a) * select(sqrt(b))	:=  select(sqrt(a * b)),\nsqrt(a) / select(sqrt(b))	:=  select(sqrt(a / b)),\nselect(sqrt(a)) / sqrt(b)	:=  select(sqrt(a / b)),\nprod(select(sqrt(a)),b,c,d)	:=  select(sqrt(prod(a,b,c,d))),\nexp(a) * select(exp(b))		:=  select(exp(a + b)),\nexp(a) / select(exp(b))		:=  select(exp(a - b)),\nselect(exp(a)) / exp(b)		:=  select(exp(a - b)),\nprod(select(exp(a)),b,c,d)	:=  select(exp(sum(a,b,c,d))),\nselect(exp(a)) ^ b		:=  select(exp(a * b)),\nexp(a) ^ select(b)		:=  select(exp(a * b)),\nln(a) + select(ln(b))		:=  select(ln(a * b)),\nln(a) - select(ln(b))		:=  select(ln(a / b)),\nselect(ln(a)) - ln(b)		:=  select(ln(a / b)),\nsum(select(ln(a)),b,c,d)	:=  select(ln(prod(a,b,c,d))),\nb * select(ln(a))		:=  select(ln(a ^ b)),\nselect(b) * ln(a)		:=  select(ln(a ^ b)),\nselect(ln(a)) / ln(b)		:=  select(log(a, b)),\nln(a) / select(ln(b))		:=  select(log(a, b)),\nselect(ln(a)) / b		:=  select(ln(a ^ (1/b))),\nln(a) / select(b)		:=  select(ln(a ^ (1/b))),\nlog10(a) + select(log10(b))	:=  select(log10(a * b)),\nlog10(a) - select(log10(b))	:=  select(log10(a / b)),\nselect(log10(a)) - log10(b)	:=  select(log10(a / b)),\nsum(select(log10(a)),b,c,d)	:=  select(log10(prod(a,b,c,d))),\nb * select(log10(a))		:=  select(log10(a ^ b)),\nselect(b) * log10(a)		:=  select(log10(a ^ b)),\nselect(log10(a)) / log10(b)	:=  select(log(a, b)),\nlog10(a) / select(log10(b))	:=  select(log(a, b)),\nselect(log10(a)) / b		:=  select(log10(a ^ (1/b))),\nlog10(a) / select(b)		:=  select(log10(a ^ (1/b))),\nlog(a,x) + select(log(b,x))	:=  select(log(a * b,x)),\nlog(a,x) - select(log(b,x))	:=  select(log(a / b,x)),\nselect(log(a,x)) - log(b,x)	:=  select(log(a / b,x)),\nsum(select(log(a,x)),b,c,d)	:=  select(log(prod(a,b,c,d),x)),\nb * select(log(a,x))		:=  select(log(a ^ b,x)),\nselect(b) * log(a,x)		:=  select(log(a ^ b,x)),\nselect(log(a,x)) / log(b,x)	:=  select(log(a, b)),\nlog(a,x) / select(log(b,x))	:=  select(log(a, b)),\nselect(log(a,x)) / b		:=  select(log(a ^ (1/b),x)),\nlog(a,x) / select(b)		:=  select(log(a ^ (1/b),x)),\nselect(x && a) || (x && opt(b)) :=  x && (select(a) || b) ]"] 3 (#$ . 6563)])
#@13 NegateRules
(defalias 'calc-NegateRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "NegateRules" "[\niterations(1),\na + select(x)			:=  a - select(-x),\na - select(x)			:=  a + select(-x),\nsum(select(x),b,c,d)		:=  -sum(select(-x),b,c,d),\na * select(x)			:=  -a * select(-x),\na / select(x)			:=  -a / select(-x),\nselect(x) / a			:=  -select(-x) / a,\nprod(select(x),b,c,d)		:=  (-1)^(d-c+1) * prod(select(-x),b,c,d),\nselect(x) ^ n			:=  select(-x) ^ a :: integer(n) :: n%2 = 0,\nselect(x) ^ n			:=  -(select(-x) ^ a) :: integer(n) :: n%2 = 1,\nselect(x) ^ a			:=  (-select(-x)) ^ a,\na ^ select(x)			:=  (1 / a)^select(-x),\nabs(select(x))			:=  abs(select(-x)),\ni sqrt(select(x))		:=  -sqrt(select(-x)),\nsqrt(select(x))			:=  i sqrt(select(-x)),\nre(select(x))			:=  -re(select(-x)),\nim(select(x))			:=  -im(select(-x)),\nconj(select(x))			:=  -conj(select(-x)),\ntrunc(select(x))		:=  -trunc(select(-x)),\nround(select(x))		:=  -round(select(-x)),\nfloor(select(x))		:=  -ceil(select(-x)),\nceil(select(x))			:=  -floor(select(-x)),\nftrunc(select(x))		:=  -ftrunc(select(-x)),\nfround(select(x))		:=  -fround(select(-x)),\nffloor(select(x))		:=  -fceil(select(-x)),\nfceil(select(x))		:=  -ffloor(select(-x)),\nexp(select(x))			:=  1 / exp(select(-x)),\nsin(select(x))			:=  -sin(select(-x)),\ncos(select(x))			:=  cos(select(-x)),\ntan(select(x))			:=  -tan(select(-x)),\nsec(select(x))			:=  sec(select(-x)),\ncsc(select(x))			:=  -csc(select(-x)),\ncot(select(x))			:=  -cot(select(-x)),\narcsin(select(x))		:=  -arcsin(select(-x)),\narccos(select(x))		:=  4 arctan(1) - arccos(select(-x)),\narctan(select(x))		:=  -arctan(select(-x)),\nsinh(select(x))			:=  -sinh(select(-x)),\ncosh(select(x))			:=  cosh(select(-x)),\ntanh(select(x))			:=  -tanh(select(-x)),\nsech(select(x))			:=  sech(select(-x)),\ncsch(select(x))			:=  -csch(select(-x)),\ncoth(select(x))			:=  -coth(select(-x)),\narcsinh(select(x))		:=  -arcsinh(select(-x)),\narctanh(select(x))		:=  -arctanh(select(-x)),\nselect(x) = a			:=  select(-x) = -a,\nselect(x) != a			:=  select(-x) != -a,\nselect(x) < a			:=  select(-x) > -a,\nselect(x) > a			:=  select(-x) < -a,\nselect(x) <= a			:=  select(-x) >= -a,\nselect(x) >= a			:=  select(-x) <= -a,\na < select(x)			:=  -a > select(-x),\na > select(x)			:=  -a < select(-x),\na <= select(x)			:=  -a >= select(-x),\na >= select(x)			:=  -a <= select(-x),\nselect(x)			:=  -select(-x) ]"] 3 (#$ . 10162)])
#@13 InvertRules
(defalias 'calc-InvertRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "InvertRules" "[\niterations(1),\na * select(x)			:=  a / select(1/x),\na / select(x)			:=  a * select(1/x),\nselect(x) / a			:=  1 / (select(1/x) a),\nprod(select(x),b,c,d)		:=  1 / prod(select(1/x),b,c,d),\nabs(select(x))			:=  1 / abs(select(1/x)),\nsqrt(select(x))			:=  1 / sqrt(select(1/x)),\nln(select(x))			:=  -ln(select(1/x)),\nlog10(select(x))		:=  -log10(select(1/x)),\nlog(select(x), a)		:=  -log(select(1/x), a),\nlog(a, select(x))		:=  -log(a, select(1/x)),\narctan(select(x))               :=  simplify(2 arctan(1))-arctan(select(1/x)),\nselect(x) = a			:=  select(1/x) = 1/a,\nselect(x) != a			:=  select(1/x) != 1/a,\nselect(x) < a			:=  select(1/x) > 1/a,\nselect(x) > a			:=  select(1/x) < 1/a,\nselect(x) <= a			:=  select(1/x) >= 1/a,\nselect(x) >= a			:=  select(1/x) <= 1/a,\na < select(x)			:=  1/a > select(1/x),\na > select(x)			:=  1/a < select(1/x),\na <= select(x)			:=  1/a >= select(1/x),\na >= select(x)			:=  1/a <= select(1/x),\nselect(x)			:=  1 / select(1/x) ]"] 3 (#$ . 12610)])
#@13 FactorRules
(defalias 'calc-FactorRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "FactorRules" "[\nthecoefs(x, [z, a+b, c]) := thefactors(x, [d x + d a/c, (c/d) x + (b/d)])\n        :: z = a b/c :: let(d := pgcd(pcont(c), pcont(b))),\nthecoefs(x, [z, a, c]) := thefactors(x, [(r x + a/(2 r))^2])\n        :: z = (a/2)^2/c :: let(r := esimplify(sqrt(c)))\n        :: !matches(r, sqrt(rr)),\nthecoefs(x, [z, 0, c]) := thefactors(x, [rc x + rz, rc x - rz])\n        :: negative(z)\n        :: let(rz := esimplify(sqrt(-z))) :: !matches(rz, sqrt(rzz))\n        :: let(rc := esimplify(sqrt(c))) :: !matches(rc, sqrt(rcc)),\nthecoefs(x, [z, 0, c]) := thefactors(x, [rz + rc x, rz - rc x])\n        :: negative(c)\n        :: let(rz := esimplify(sqrt(z))) :: !matches(rz, sqrt(rzz))\n        :: let(rc := esimplify(sqrt(-c))) :: !matches(rc, sqrt(rcc))\n ]"] 3 (#$ . 13723)])
#@17 IntegAfterRules
(defalias 'calc-IntegAfterRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "IntegAfterRules" "[\n opt(a) ln(x) + opt(b) ln(y) := 2 a esimplify(arctanh(x-1))\n     :: a + b = 0 :: nrat(x + y) = 2 || nrat(x - y) = 2,\n a * (b + c) := a b + a c :: constant(a)\n ]"] 3 (#$ . 14607)])
#@10 FitRules
(defalias 'calc-FitRules #[nil "\300\301\302\"\207" [calc-compile-rule-set "FitRules" "[\n\nschedule(1,2,3,4),\niterations(inf),\n\nphase(1),\ne^x  		:=  exp(x),\nx^y		:=  exp(y ln(x))  :: !istrue(constant(y)),\nx/y		:=  x fitinv(y),\nfitinv(x y)	:=  fitinv(x) fitinv(y),\nexp(a) exp(b)	:=  exp(a + b),\na exp(b)	:=  exp(ln(a) + b)  :: !hasfitvars(a),\nfitinv(exp(a))  :=  exp(-a),\nln(a b)		:=  ln(a) + ln(b),\nln(fitinv(a))	:=  -ln(a),\nlog10(a b)	:=  log10(a) + log10(b),\nlog10(fitinv(a)) := -log10(a),\nlog(a,b)	:=  ln(a)/ln(b),\nln(exp(a))	:=  a,\na*(b+c)		:=  a*b + a*c,\n(a+b)^n		:=  x  :: integer(n) :: n >= 2\n		       :: let(x, expandpow(a+b,n))\n		       :: quote(matches(x,y+z)),\n\nphase(1,2),\nfitmodel(y = x)   :=  fitmodel(0, y - x),\nfitmodel(y, x+c)  :=  fitmodel(y-c, x)  :: !hasfitparams(c),\nfitmodel(y, x c)  :=  fitmodel(y/c, x)  :: !hasfitparams(c),\nfitmodel(y, x/(c opt(d)))  :=  fitmodel(y c, x/d)  :: !hasfitparams(c),\nfitmodel(y, apply(f,[x]))  :=  fitmodel(yy, x)\n			       :: hasfitparams(x)\n			       :: let(FTemp() = yy,\n			              solve(apply(f,[FTemp()]) = y,\n					    FTemp())),\nfitmodel(y, apply(f,[x,c]))  :=  fitmodel(yy, x)\n				 :: !hasfitparams(c)\n				 :: let(FTemp() = yy,\n				        solve(apply(f,[FTemp(),c]) = y,\n					      FTemp())),\nfitmodel(y, apply(f,[c,x]))  :=  fitmodel(yy, x)\n				 :: !hasfitparams(c)\n				 :: let(FTemp() = yy,\n				        solve(apply(f,[c,FTemp()]) = y,\n					      FTemp())),\n\nphase(2,3),\nfitmodel(y, x)              :=  fitsystem(y, [], [], fitpart(1,1,x)),\nfitpart(a,b,plain(x + y))   :=  fitpart(a,b,x) + fitpart(a,b,y),\nfitpart(a,b,plain(x - y))   :=  fitpart(a,b,x) + fitpart(-a,b,y),\nfitpart(a,b,plain(-x))	    :=  fitpart(-a,b,x),\nfitpart(a,b,x opt(c))	    :=  fitpart(a,x b,c)  :: !hasfitvars(x),\nfitpart(a,x opt(b),c)	    :=  fitpart(x a,b,c)  :: !hasfitparams(x),\nfitpart(a,x y + x opt(z),c) :=	fitpart(a,x*(y+z),c),\nfitpart(a,b,c)		    :=  fitpart2(a,b,c),\n\nphase(3),\nfitpart2(a1,b1,x) + fitpart2(a2,b2,x)  :=  fitpart(1, a1 b1 + a2 b2, x),\nfitpart2(a1,x,c1) + fitpart2(a2,x,c2)  :=  fitpart2(1, x, a1 c1 + a2 c2),\n\nphase(4),\nfitinv(x)  	:=  1 / x,\nexp(x + ln(y))  :=  y exp(x),\nexp(x ln(y))	:=  y^x,\nln(x) + ln(y)	:=  ln(x y),\nln(x) - ln(y)	:=  ln(x/y),\nx*y + x*z	:=  x*(y+z),\nfitsystem(y, xv, pv, fitpart2(a,fitparam(b),c) + opt(d))\n		:=  fitsystem(y, rcons(xv, a c),\n      		              rcons(pv, fitdummy(b) = fitparam(b)), d)\n		    :: b = vlen(pv)+1,\nfitsystem(y, xv, pv, fitpart2(a,b,c) + opt(d))\n		:=  fitsystem(y, rcons(xv, a c),\n			      rcons(pv, fitdummy(vlen(pv)+1) = b), d),\nfitsystem(y, xv, pv, 0)  :=  fitsystem(y, xv, cons(fvh,fvt))\n			     :: !hasfitparams(xv)\n			     :: let(cons(fvh,fvt),\n				    solve(pv, table(fitparam(j), j, 1,\n						    hasfitparams(pv)))),\nfitparam(n) = x  :=  x ]"] 3 (#$ . 14916)])
(provide 'calc-rules)