\input texinfo
@setfilename parallel_alternatives.info
@documentencoding utf-8
@settitle parallel_alternatives - Alternatives to GNU parallel
@node Top
@top parallel_alternatives
@menu
* NAME::
* DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES::
* TESTING OTHER TOOLS::
* AUTHOR::
* LICENSE::
* DEPENDENCIES::
* SEE ALSO::
@end menu
@node NAME
@chapter NAME
parallel_alternatives - Alternatives to GNU @strong{parallel}
@node DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES
@chapter DIFFERENCES BETWEEN GNU Parallel AND ALTERNATIVES
There are a lot programs that share functionality with GNU
@strong{parallel}. Some of these are specialized tools, and while GNU
@strong{parallel} can emulate many of them, a specialized tool can be better
at a given task. GNU @strong{parallel} strives to include the best of the
general functionality without sacrificing ease of use.
@strong{parallel} has existed since 2002-01-06 and as GNU @strong{parallel} since
2010. A lot of the alternatives have not had the vitality to survive
that long, but have come and gone during that time.
GNU @strong{parallel} is actively maintained with a new release every month
since 2010. Most other alternatives are fleeting interests of the
developers with irregular releases and only maintained for a few
years.
@menu
* SUMMARY LEGEND::
* DIFFERENCES BETWEEN xargs AND GNU Parallel::
* DIFFERENCES BETWEEN find -exec AND GNU Parallel::
* DIFFERENCES BETWEEN make -j AND GNU Parallel::
* DIFFERENCES BETWEEN ppss AND GNU Parallel::
* DIFFERENCES BETWEEN pexec AND GNU Parallel::
* DIFFERENCES BETWEEN xjobs AND GNU Parallel::
* DIFFERENCES BETWEEN prll AND GNU Parallel::
* DIFFERENCES BETWEEN dxargs AND GNU Parallel::
* DIFFERENCES BETWEEN mdm/middleman AND GNU Parallel::
* DIFFERENCES BETWEEN xapply AND GNU Parallel::
* DIFFERENCES BETWEEN AIX apply AND GNU Parallel::
* DIFFERENCES BETWEEN paexec AND GNU Parallel::
* DIFFERENCES BETWEEN map(sitaramc) AND GNU Parallel::
* DIFFERENCES BETWEEN ladon AND GNU Parallel::
* DIFFERENCES BETWEEN jobflow AND GNU Parallel::
* DIFFERENCES BETWEEN gargs AND GNU Parallel::
* DIFFERENCES BETWEEN orgalorg AND GNU Parallel::
* DIFFERENCES BETWEEN Rust parallel(mmstick) AND GNU Parallel::
* DIFFERENCES BETWEEN Rush AND GNU Parallel::
* DIFFERENCES BETWEEN ClusterSSH AND GNU Parallel::
* DIFFERENCES BETWEEN coshell AND GNU Parallel::
* DIFFERENCES BETWEEN spread AND GNU Parallel::
* DIFFERENCES BETWEEN pyargs AND GNU Parallel::
* DIFFERENCES BETWEEN concurrently AND GNU Parallel::
* DIFFERENCES BETWEEN map(soveran) AND GNU Parallel::
* DIFFERENCES BETWEEN loop AND GNU Parallel::
* DIFFERENCES BETWEEN lorikeet AND GNU Parallel::
* DIFFERENCES BETWEEN spp AND GNU Parallel::
* DIFFERENCES BETWEEN paral AND GNU Parallel::
* DIFFERENCES BETWEEN concurr AND GNU Parallel::
* DIFFERENCES BETWEEN lesser-parallel AND GNU Parallel::
* DIFFERENCES BETWEEN npm-parallel AND GNU Parallel::
* DIFFERENCES BETWEEN machma AND GNU Parallel::
* DIFFERENCES BETWEEN interlace AND GNU Parallel::
* DIFFERENCES BETWEEN otonvm Parallel AND GNU Parallel::
* DIFFERENCES BETWEEN k-bx par AND GNU Parallel::
* DIFFERENCES BETWEEN parallelshell AND GNU Parallel::
* DIFFERENCES BETWEEN shell-executor AND GNU Parallel::
* DIFFERENCES BETWEEN non-GNU par AND GNU Parallel::
* DIFFERENCES BETWEEN fd AND GNU Parallel::
* DIFFERENCES BETWEEN lateral AND GNU Parallel::
* DIFFERENCES BETWEEN with-this AND GNU Parallel::
* DIFFERENCES BETWEEN Tollef's parallel (moreutils) AND GNU Parallel::
* DIFFERENCES BETWEEN rargs AND GNU Parallel::
* DIFFERENCES BETWEEN threader AND GNU Parallel::
* DIFFERENCES BETWEEN runp AND GNU Parallel::
* DIFFERENCES BETWEEN papply AND GNU Parallel::
* DIFFERENCES BETWEEN async AND GNU Parallel::
* DIFFERENCES BETWEEN pardi AND GNU Parallel::
* DIFFERENCES BETWEEN bthread AND GNU Parallel::
* DIFFERENCES BETWEEN simple_gpu_scheduler AND GNU Parallel::
* DIFFERENCES BETWEEN parasweep AND GNU Parallel::
* DIFFERENCES BETWEEN parallel-bash AND GNU Parallel::
* DIFFERENCES BETWEEN bash-concurrent AND GNU Parallel::
* DIFFERENCES BETWEEN spawntool AND GNU Parallel::
* DIFFERENCES BETWEEN go-pssh AND GNU Parallel::
* DIFFERENCES BETWEEN go-parallel AND GNU Parallel::
* DIFFERENCES BETWEEN p AND GNU Parallel::
* DIFFERENCES BETWEEN senechal AND GNU Parallel::
* DIFFERENCES BETWEEN async AND GNU Parallel 1::
* DIFFERENCES BETWEEN tandem AND GNU Parallel::
* DIFFERENCES BETWEEN rust-parallel(aaronriekenberg) AND GNU Parallel::
* DIFFERENCES BETWEEN parallelium AND GNU Parallel::
* DIFFERENCES BETWEEN forkrun AND GNU Parallel::
* DIFFERENCES BETWEEN parallel-sh AND GNU Parallel::
* DIFFERENCES BETWEEN bash-parallel AND GNU Parallel::
* DIFFERENCES BETWEEN PaSH AND GNU Parallel::
* DIFFERENCES BETWEEN korovkin-parallel AND GNU Parallel::
* DIFFERENCES BETWEEN xe AND GNU Parallel::
* DIFFERENCES BETWEEN sp AND GNU Parallel::
* Todo::
@end menu
@node SUMMARY LEGEND
@section SUMMARY LEGEND
The following features are in some of the comparable tools:
@menu
* Inputs::
* Manipulation of input::
* Outputs::
* Execution::
* Remote execution::
* Semaphore::
* Legend::
@end menu
@node Inputs
@subsection Inputs
@table @asis
@item I1. Arguments can be read from stdin
@anchor{I1. Arguments can be read from stdin}
@item I2. Arguments can be read from a file
@anchor{I2. Arguments can be read from a file}
@item I3. Arguments can be read from multiple files
@anchor{I3. Arguments can be read from multiple files}
@item I4. Arguments can be read from command line
@anchor{I4. Arguments can be read from command line}
@item I5. Arguments can be read from a table
@anchor{I5. Arguments can be read from a table}
@item I6. Arguments can be read from the same file using #! (shebang)
@anchor{I6. Arguments can be read from the same file using #! (shebang)}
@item I7. Line oriented input as default (Quoting of special chars not needed)
@anchor{I7. Line oriented input as default (Quoting of special chars not needed)}
@end table
@node Manipulation of input
@subsection Manipulation of input
@table @asis
@item M1. Composed command
@anchor{M1. Composed command}
@item M2. Multiple arguments can fill up an execution line
@anchor{M2. Multiple arguments can fill up an execution line}
@item M3. Arguments can be put anywhere in the execution line
@anchor{M3. Arguments can be put anywhere in the execution line}
@item M4. Multiple arguments can be put anywhere in the execution line
@anchor{M4. Multiple arguments can be put anywhere in the execution line}
@item M5. Arguments can be replaced with context
@anchor{M5. Arguments can be replaced with context}
@item M6. Input can be treated as the complete command line
@anchor{M6. Input can be treated as the complete command line}
@end table
@node Outputs
@subsection Outputs
@table @asis
@item O1. Grouping output so output from different jobs do not mix
@anchor{O1. Grouping output so output from different jobs do not mix}
@item O2. Send stderr (standard error) to stderr (standard error)
@anchor{O2. Send stderr (standard error) to stderr (standard error)}
@item O3. Send stdout (standard output) to stdout (standard output)
@anchor{O3. Send stdout (standard output) to stdout (standard output)}
@item O4. Order of output can be same as order of input
@anchor{O4. Order of output can be same as order of input}
@item O5. Stdout only contains stdout (standard output) from the command
@anchor{O5. Stdout only contains stdout (standard output) from the command}
@item O6. Stderr only contains stderr (standard error) from the command
@anchor{O6. Stderr only contains stderr (standard error) from the command}
@item O7. Buffering on disk
@anchor{O7. Buffering on disk}
@item O8. No temporary files left if killed
@anchor{O8. No temporary files left if killed}
@item O9. Test if disk runs full during run
@anchor{O9. Test if disk runs full during run}
@item O10. Output of a line bigger than 4 GB
@anchor{O10. Output of a line bigger than 4 GB}
@end table
@node Execution
@subsection Execution
@table @asis
@item E1. Run jobs in parallel
@anchor{E1. Run jobs in parallel}
@item E2. List running jobs
@anchor{E2. List running jobs}
@item E3. Finish running jobs, but do not start new jobs
@anchor{E3. Finish running jobs@comma{} but do not start new jobs}
@item E4. Number of running jobs can depend on number of cpus
@anchor{E4. Number of running jobs can depend on number of cpus}
@item E5. Finish running jobs, but do not start new jobs after first failure
@anchor{E5. Finish running jobs@comma{} but do not start new jobs after first failure}
@item E6. Number of running jobs can be adjusted while running
@anchor{E6. Number of running jobs can be adjusted while running}
@item E7. Only spawn new jobs if load is less than a limit
@anchor{E7. Only spawn new jobs if load is less than a limit}
@end table
@node Remote execution
@subsection Remote execution
@table @asis
@item R1. Jobs can be run on remote computers
@anchor{R1. Jobs can be run on remote computers}
@item R2. Basefiles can be transferred
@anchor{R2. Basefiles can be transferred}
@item R3. Argument files can be transferred
@anchor{R3. Argument files can be transferred}
@item R4. Result files can be transferred
@anchor{R4. Result files can be transferred}
@item R5. Cleanup of transferred files
@anchor{R5. Cleanup of transferred files}
@item R6. No config files needed
@anchor{R6. No config files needed}
@item R7. Do not run more than SSHD's MaxStartups can handle
@anchor{R7. Do not run more than SSHD's MaxStartups can handle}
@item R8. Configurable SSH command
@anchor{R8. Configurable SSH command}
@item R9. Retry if connection breaks occasionally
@anchor{R9. Retry if connection breaks occasionally}
@end table
@node Semaphore
@subsection Semaphore
@table @asis
@item S1. Possibility to work as a mutex
@anchor{S1. Possibility to work as a mutex}
@item S2. Possibility to work as a counting semaphore
@anchor{S2. Possibility to work as a counting semaphore}
@end table
@node Legend
@subsection Legend
@table @asis
@item - = no
@anchor{- = no}
@item x = not applicable
@anchor{x = not applicable}
@item ID = yes
@anchor{ID = yes}
@end table
As every new version of the programs are not tested the table may be
outdated. Please file a bug report if you find errors (See REPORTING
BUGS).
parallel:
@table @asis
@item I1 I2 I3 I4 I5 I6 I7
@anchor{I1 I2 I3 I4 I5 I6 I7}
@item M1 M2 M3 M4 M5 M6
@anchor{M1 M2 M3 M4 M5 M6}
@item O1 O2 O3 O4 O5 O6 O7 O8 O9 O10
@anchor{O1 O2 O3 O4 O5 O6 O7 O8 O9 O10}
@item E1 E2 E3 E4 E5 E6 E7
@anchor{E1 E2 E3 E4 E5 E6 E7}
@item R1 R2 R3 R4 R5 R6 R7 R8 R9
@anchor{R1 R2 R3 R4 R5 R6 R7 R8 R9}
@item S1 S2
@anchor{S1 S2}
@end table
@node DIFFERENCES BETWEEN xargs AND GNU Parallel
@section DIFFERENCES BETWEEN xargs AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - - - - -
@anchor{I1 I2 - - - - -}
@item - M2 M3 - - -
@anchor{- M2 M3 - - -}
@item - O2 O3 - O5 O6
@anchor{- O2 O3 - O5 O6}
@item E1 - - - - - -
@anchor{E1 - - - - - -}
@item - - - - - x - - -
@anchor{- - - - - x - - -}
@item - -
@anchor{- -}
@end table
@strong{xargs} offers some of the same possibilities as GNU @strong{parallel}.
@strong{xargs} deals badly with special characters (such as space, \, ' and
"). To see the problem try this:
@verbatim
touch important_file
touch 'not important_file'
ls not* | xargs rm
mkdir -p "My brother's 12\" records"
ls | xargs rmdir
touch 'c:\windows\system32\clfs.sys'
echo 'c:\windows\system32\clfs.sys' | xargs ls -l
@end verbatim
You can specify @strong{-0}, but many input generators are not optimized for
using @strong{NUL} as separator but are optimized for @strong{newline} as
separator. E.g. @strong{awk}, @strong{ls}, @strong{echo}, @strong{tar -v}, @strong{head} (requires
using @strong{-z}), @strong{tail} (requires using @strong{-z}), @strong{sed} (requires using
@strong{-z}), @strong{perl} (@strong{-0} and \0 instead of \n), @strong{locate} (requires
using @strong{-0}), @strong{find} (requires using @strong{-print0}), @strong{grep} (requires
using @strong{-z} or @strong{-Z}), @strong{sort} (requires using @strong{-z}).
GNU @strong{parallel}'s newline separation can be emulated with:
@verbatim
cat | xargs -d "\n" -n1 command
@end verbatim
@strong{xargs} can run a given number of jobs in parallel, but has no
support for running number-of-cpu-cores jobs in parallel.
@strong{xargs} has no support for grouping the output, therefore output may
run together, e.g. the first half of a line is from one process and
the last half of the line is from another process. The example
@strong{Parallel grep} cannot be done reliably with @strong{xargs} because of
this. To see this in action try:
@verbatim
parallel perl -e "'"'$a="1"."{}"x10000000;print $a,"\n"'"'" \
'>' {} ::: a b c d e f g h
# Serial = no mixing = the wanted result
# 'tr -s a-z' squeezes repeating letters into a single letter
echo a b c d e f g h | xargs -P1 -n1 grep 1 | tr -s a-z
# Compare to 8 jobs in parallel
parallel -kP8 -n1 grep 1 ::: a b c d e f g h | tr -s a-z
echo a b c d e f g h | xargs -P8 -n1 grep 1 | tr -s a-z
echo a b c d e f g h | xargs -P8 -n1 grep --line-buffered 1 | \
tr -s a-z
@end verbatim
Or try this:
@verbatim
slow_seq() {
echo Count to "$@"
seq "$@" |
perl -ne '$|=1; for(split//){ print; select($a,$a,$a,0.100);}'
}
export -f slow_seq
# Serial = no mixing = the wanted result
seq 8 | xargs -n1 -P1 -I {} bash -c 'slow_seq {}'
# Compare to 8 jobs in parallel
seq 8 | parallel -P8 slow_seq {}
seq 8 | xargs -n1 -P8 -I {} bash -c 'slow_seq {}'
@end verbatim
@strong{xargs} has no support for keeping the order of the output, therefore
if running jobs in parallel using @strong{xargs} the output of the second
job cannot be postponed till the first job is done.
@strong{xargs} has no support for running jobs on remote computers.
@strong{xargs} has no support for context replace, so you will have to create the
arguments.
If you use a replace string in @strong{xargs} (@strong{-I}) you can not force
@strong{xargs} to use more than one argument.
Quoting in @strong{xargs} works like @strong{-q} in GNU @strong{parallel}. This means
composed commands and redirection require using @strong{bash -c}.
@verbatim
ls | parallel "wc {} >{}.wc"
ls | parallel "echo {}; ls {}|wc"
@end verbatim
becomes (assuming you have 8 cores and that none of the filenames
contain space, " or ').
@verbatim
ls | xargs -d "\n" -P8 -I {} bash -c "wc {} >{}.wc"
ls | xargs -d "\n" -P8 -I {} bash -c "echo {}; ls {}|wc"
@end verbatim
A more extreme example can be found on:
https://unix.stackexchange.com/q/405552/
https://www.gnu.org/software/findutils/
@node DIFFERENCES BETWEEN find -exec AND GNU Parallel
@section DIFFERENCES BETWEEN find -exec AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - x - x -
@anchor{- - - x - x -}
@item - M2 M3 - - - -
@anchor{- M2 M3 - - - -}
@item - O2 O3 O4 O5 O6
@anchor{- O2 O3 O4 O5 O6}
@item - - - - - - -
@anchor{- - - - - - -}
@item - - - - - - - - -
@anchor{- - - - - - - - -}
@item x x
@anchor{x x}
@end table
@strong{find -exec} offers some of the same possibilities as GNU @strong{parallel}.
@strong{find -exec} only works on files. Processing other input (such as
hosts or URLs) will require creating these inputs as files. @strong{find
-exec} has no support for running commands in parallel.
https://www.gnu.org/software/findutils/
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN make -j AND GNU Parallel
@section DIFFERENCES BETWEEN make -j AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - - - - -
@anchor{- - - - - - - 1}
@item - - - - - -
@anchor{- - - - - -}
@item O1 O2 O3 - x O6
@anchor{O1 O2 O3 - x O6}
@item E1 - - - E5 -
@anchor{E1 - - - E5 -}
@item - - - - - - - - -
@anchor{- - - - - - - - - 1}
@item - -
@anchor{- - 1}
@end table
@strong{make -j} can run jobs in parallel, but requires a crafted Makefile
to do this. That results in extra quoting to get filenames containing
newlines to work correctly.
@strong{make -j} computes a dependency graph before running jobs. Jobs run
by GNU @strong{parallel} does not depend on each other.
(Very early versions of GNU @strong{parallel} were coincidentally implemented
using @strong{make -j}).
https://www.gnu.org/software/make/
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN ppss AND GNU Parallel
@section DIFFERENCES BETWEEN ppss AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - - - - I7
@anchor{I1 I2 - - - - I7}
@item M1 - M3 - - M6
@anchor{M1 - M3 - - M6}
@item O1 - - x - -
@anchor{O1 - - x - -}
@item E1 E2 ?E3 E4 - - -
@anchor{E1 E2 ?E3 E4 - - -}
@item R1 R2 R3 R4 - - ?R7 ? ?
@anchor{R1 R2 R3 R4 - - ?R7 ? ?}
@item - -
@anchor{- - 2}
@end table
@strong{ppss} is also a tool for running jobs in parallel.
The output of @strong{ppss} is status information and thus not useful for
using as input for another command. The output from the jobs are put
into files.
The argument replace string ($ITEM) cannot be changed. Arguments must
be quoted - thus arguments containing special characters (space '"&!*)
may cause problems. More than one argument is not supported. Filenames
containing newlines are not processed correctly. When reading input
from a file null cannot be used as a terminator. @strong{ppss} needs to read
the whole input file before starting any jobs.
Output and status information is stored in ppss_dir and thus requires
cleanup when completed. If the dir is not removed before running
@strong{ppss} again it may cause nothing to happen as @strong{ppss} thinks the
task is already done. GNU @strong{parallel} will normally not need cleaning
up if running locally and will only need cleaning up if stopped
abnormally and running remote (@strong{--cleanup} may not complete if
stopped abnormally). The example @strong{Parallel grep} would require extra
postprocessing if written using @strong{ppss}.
For remote systems PPSS requires 3 steps: config, deploy, and
start. GNU @strong{parallel} only requires one step.
@menu
* EXAMPLES FROM ppss MANUAL::
@end menu
@node EXAMPLES FROM ppss MANUAL
@subsection EXAMPLES FROM ppss MANUAL
Here are the examples from @strong{ppss}'s manual page with the equivalent
using GNU @strong{parallel}:
@verbatim
1$ ./ppss.sh standalone -d /path/to/files -c 'gzip '
1$ find /path/to/files -type f | parallel gzip
2$ ./ppss.sh standalone -d /path/to/files \
-c 'cp "$ITEM" /destination/dir '
2$ find /path/to/files -type f | parallel cp {} /destination/dir
3$ ./ppss.sh standalone -f list-of-urls.txt -c 'wget -q '
3$ parallel -a list-of-urls.txt wget -q
4$ ./ppss.sh standalone -f list-of-urls.txt -c 'wget -q "$ITEM"'
4$ parallel -a list-of-urls.txt wget -q {}
5$ ./ppss config -C config.cfg -c 'encode.sh ' -d /source/dir \
-m 192.168.1.100 -u ppss -k ppss-key.key -S ./encode.sh \
-n nodes.txt -o /some/output/dir --upload --download;
./ppss deploy -C config.cfg
./ppss start -C config
5$ # parallel does not use configs. If you want
# a different username put it in nodes.txt: user@hostname
find source/dir -type f |
parallel --sshloginfile nodes.txt --trc {.}.mp3 \
lame -a {} -o {.}.mp3 --preset standard --quiet
6$ ./ppss stop -C config.cfg
6$ killall -TERM parallel
7$ ./ppss pause -C config.cfg
7$ Press: CTRL-Z or killall -SIGTSTP parallel
8$ ./ppss continue -C config.cfg
8$ Enter: fg or killall -SIGCONT parallel
9$ ./ppss.sh status -C config.cfg
9$ killall -SIGUSR2 parallel
@end verbatim
https://github.com/louwrentius/PPSS
(Last checked: 2010-12)
@node DIFFERENCES BETWEEN pexec AND GNU Parallel
@section DIFFERENCES BETWEEN pexec AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - I4 I5 - -
@anchor{I1 I2 - I4 I5 - -}
@item M1 - M3 - - M6
@anchor{M1 - M3 - - M6 1}
@item O1 O2 O3 - O5 O6
@anchor{O1 O2 O3 - O5 O6}
@item E1 - - E4 - E6 -
@anchor{E1 - - E4 - E6 -}
@item R1 - - - - R6 - - -
@anchor{R1 - - - - R6 - - -}
@item S1 -
@anchor{S1 -}
@end table
@strong{pexec} is also a tool for running jobs in parallel.
@menu
* EXAMPLES FROM pexec MANUAL::
@end menu
@node EXAMPLES FROM pexec MANUAL
@subsection EXAMPLES FROM pexec MANUAL
Here are the examples from @strong{pexec}'s info page with the equivalent
using GNU @strong{parallel}:
@verbatim
1$ pexec -o sqrt-%s.dat -p "$(seq 10)" -e NUM -n 4 -c -- \
'echo "scale=10000;sqrt($NUM)" | bc'
1$ seq 10 | parallel -j4 'echo "scale=10000;sqrt({})" | \
bc > sqrt-{}.dat'
2$ pexec -p "$(ls myfiles*.ext)" -i %s -o %s.sort -- sort
2$ ls myfiles*.ext | parallel sort {} ">{}.sort"
3$ pexec -f image.list -n auto -e B -u star.log -c -- \
'fistar $B.fits -f 100 -F id,x,y,flux -o $B.star'
3$ parallel -a image.list \
'fistar {}.fits -f 100 -F id,x,y,flux -o {}.star' 2>star.log
4$ pexec -r *.png -e IMG -c -o - -- \
'convert $IMG ${IMG%.png}.jpeg ; "echo $IMG: done"'
4$ ls *.png | parallel 'convert {} {.}.jpeg; echo {}: done'
5$ pexec -r *.png -i %s -o %s.jpg -c 'pngtopnm | pnmtojpeg'
5$ ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {}.jpg'
6$ for p in *.png ; do echo ${p%.png} ; done | \
pexec -f - -i %s.png -o %s.jpg -c 'pngtopnm | pnmtojpeg'
6$ ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {.}.jpg'
7$ LIST=$(for p in *.png ; do echo ${p%.png} ; done)
pexec -r $LIST -i %s.png -o %s.jpg -c 'pngtopnm | pnmtojpeg'
7$ ls *.png | parallel 'pngtopnm < {} | pnmtojpeg > {.}.jpg'
8$ pexec -n 8 -r *.jpg -y unix -e IMG -c \
'pexec -j -m blockread -d $IMG | \
jpegtopnm | pnmscale 0.5 | pnmtojpeg | \
pexec -j -m blockwrite -s th_$IMG'
8$ # Combining GNU B<parallel> and GNU B<sem>.
ls *jpg | parallel -j8 'sem --id blockread cat {} | jpegtopnm |' \
'pnmscale 0.5 | pnmtojpeg | sem --id blockwrite cat > th_{}'
# If reading and writing is done to the same disk, this may be
# faster as only one process will be either reading or writing:
ls *jpg | parallel -j8 'sem --id diskio cat {} | jpegtopnm |' \
'pnmscale 0.5 | pnmtojpeg | sem --id diskio cat > th_{}'
@end verbatim
https://www.gnu.org/software/pexec/
(Last checked: 2010-12)
@node DIFFERENCES BETWEEN xjobs AND GNU Parallel
@section DIFFERENCES BETWEEN xjobs AND GNU Parallel
@strong{xjobs} is also a tool for running jobs in parallel. It only supports
running jobs on your local computer.
@strong{xjobs} deals badly with special characters just like @strong{xargs}. See
the section @strong{DIFFERENCES BETWEEN xargs AND GNU Parallel}.
@menu
* EXAMPLES FROM xjobs MANUAL::
@end menu
@node EXAMPLES FROM xjobs MANUAL
@subsection EXAMPLES FROM xjobs MANUAL
Here are the examples from @strong{xjobs}'s man page with the equivalent
using GNU @strong{parallel}:
@verbatim
1$ ls -1 *.zip | xjobs unzip
1$ ls *.zip | parallel unzip
2$ ls -1 *.zip | xjobs -n unzip
2$ ls *.zip | parallel unzip >/dev/null
3$ find . -name '*.bak' | xjobs gzip
3$ find . -name '*.bak' | parallel gzip
4$ ls -1 *.jar | sed 's/\(.*\)/\1 > \1.idx/' | xjobs jar tf
4$ ls *.jar | parallel jar tf {} '>' {}.idx
5$ xjobs -s script
5$ cat script | parallel
6$ mkfifo /var/run/my_named_pipe;
xjobs -s /var/run/my_named_pipe &
echo unzip 1.zip >> /var/run/my_named_pipe;
echo tar cf /backup/myhome.tar /home/me >> /var/run/my_named_pipe
6$ mkfifo /var/run/my_named_pipe;
cat /var/run/my_named_pipe | parallel &
echo unzip 1.zip >> /var/run/my_named_pipe;
echo tar cf /backup/myhome.tar /home/me >> /var/run/my_named_pipe
@end verbatim
https://www.maier-komor.de/xjobs.html
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN prll AND GNU Parallel
@section DIFFERENCES BETWEEN prll AND GNU Parallel
@strong{prll} is also a tool for running jobs in parallel. It does not
support running jobs on remote computers.
@strong{prll} encourages using BASH aliases and BASH functions instead of
scripts. GNU @strong{parallel} supports scripts directly, functions if they
are exported using @strong{export -f}, and aliases if using @strong{env_parallel}.
@strong{prll} generates a lot of status information on stderr (standard
error) which makes it harder to use the stderr (standard error) output
of the job directly as input for another program.
@menu
* EXAMPLES FROM prll's MANUAL::
@end menu
@node EXAMPLES FROM prll's MANUAL
@subsection EXAMPLES FROM prll's MANUAL
Here is the example from @strong{prll}'s man page with the equivalent
using GNU @strong{parallel}:
@verbatim
1$ prll -s 'mogrify -flip $1' *.jpg
1$ parallel mogrify -flip ::: *.jpg
@end verbatim
https://github.com/exzombie/prll
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN dxargs AND GNU Parallel
@section DIFFERENCES BETWEEN dxargs AND GNU Parallel
@strong{dxargs} is also a tool for running jobs in parallel.
@strong{dxargs} does not deal well with more simultaneous jobs than SSHD's
MaxStartups. @strong{dxargs} is only built for remote run jobs, but does not
support transferring of files.
https://web.archive.org/web/20120518070250/http://www.
semicomplete.com/blog/geekery/distributed-xargs.html
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN mdm/middleman AND GNU Parallel
@section DIFFERENCES BETWEEN mdm/middleman AND GNU Parallel
middleman(mdm) is also a tool for running jobs in parallel.
@menu
* EXAMPLES FROM middleman's WEBSITE::
@end menu
@node EXAMPLES FROM middleman's WEBSITE
@subsection EXAMPLES FROM middleman's WEBSITE
Here are the shellscripts of
https://web.archive.org/web/20110728064735/http://mdm.
berlios.de/usage.html ported to GNU @strong{parallel}:
@verbatim
1$ seq 19 | parallel buffon -o - | sort -n > result
cat files | parallel cmd
find dir -execdir sem cmd {} \;
@end verbatim
https://github.com/cklin/mdm
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN xapply AND GNU Parallel
@section DIFFERENCES BETWEEN xapply AND GNU Parallel
@strong{xapply} can run jobs in parallel on the local computer.
@menu
* EXAMPLES FROM xapply's MANUAL::
@end menu
@node EXAMPLES FROM xapply's MANUAL
@subsection EXAMPLES FROM xapply's MANUAL
Here are the examples from @strong{xapply}'s man page with the equivalent
using GNU @strong{parallel}:
@verbatim
1$ xapply '(cd %1 && make all)' */
1$ parallel 'cd {} && make all' ::: */
2$ xapply -f 'diff %1 ../version5/%1' manifest | more
2$ parallel diff {} ../version5/{} < manifest | more
3$ xapply -p/dev/null -f 'diff %1 %2' manifest1 checklist1
3$ parallel --link diff {1} {2} :::: manifest1 checklist1
4$ xapply 'indent' *.c
4$ parallel indent ::: *.c
5$ find ~ksb/bin -type f ! -perm -111 -print | \
xapply -f -v 'chmod a+x' -
5$ find ~ksb/bin -type f ! -perm -111 -print | \
parallel -v chmod a+x
6$ find */ -... | fmt 960 1024 | xapply -f -i /dev/tty 'vi' -
6$ sh <(find */ -... | parallel -s 1024 echo vi)
6$ find */ -... | parallel -s 1024 -Xuj1 vi
7$ find ... | xapply -f -5 -i /dev/tty 'vi' - - - - -
7$ sh <(find ... | parallel -n5 echo vi)
7$ find ... | parallel -n5 -uj1 vi
8$ xapply -fn "" /etc/passwd
8$ parallel -k echo < /etc/passwd
9$ tr ':' '\012' < /etc/passwd | \
xapply -7 -nf 'chown %1 %6' - - - - - - -
9$ tr ':' '\012' < /etc/passwd | parallel -N7 chown {1} {6}
10$ xapply '[ -d %1/RCS ] || echo %1' */
10$ parallel '[ -d {}/RCS ] || echo {}' ::: */
11$ xapply -f '[ -f %1 ] && echo %1' List | ...
11$ parallel '[ -f {} ] && echo {}' < List | ...
@end verbatim
https://www.databits.net/~ksb/msrc/local/bin/xapply/xapply.html (Last
checked: 2010-12)
@node DIFFERENCES BETWEEN AIX apply AND GNU Parallel
@section DIFFERENCES BETWEEN AIX apply AND GNU Parallel
@strong{apply} can build command lines based on a template and arguments -
very much like GNU @strong{parallel}. @strong{apply} does not run jobs in
parallel. @strong{apply} does not use an argument separator (like @strong{:::});
instead the template must be the first argument.
@menu
* EXAMPLES FROM IBM's KNOWLEDGE CENTER::
@end menu
@node EXAMPLES FROM IBM's KNOWLEDGE CENTER
@subsection EXAMPLES FROM IBM's KNOWLEDGE CENTER
Here are the examples from IBM's Knowledge Center and the
corresponding command using GNU @strong{parallel}:
@menu
* To obtain results similar to those of the @strong{ls} command@comma{} enter@asis{:}::
* To compare the file named a1 to the file named b1@comma{} and the file named a2 to the file named b2@comma{} enter@asis{:}::
* To run the @strong{who} command five times@comma{} enter@asis{:}::
* To link all files in the current directory to the directory /usr/joe@comma{} enter@asis{:}::
@end menu
@node To obtain results similar to those of the @strong{ls} command@comma{} enter:
@subsubsection To obtain results similar to those of the @strong{ls} command, enter:
@verbatim
1$ apply echo *
1$ parallel echo ::: *
@end verbatim
@node To compare the file named a1 to the file named b1@comma{} and the file named a2 to the file named b2@comma{} enter:
@subsubsection To compare the file named a1 to the file named b1, and the file named a2 to the file named b2, enter:
@verbatim
2$ apply -2 cmp a1 b1 a2 b2
2$ parallel -N2 cmp ::: a1 b1 a2 b2
@end verbatim
@node To run the @strong{who} command five times@comma{} enter:
@subsubsection To run the @strong{who} command five times, enter:
@verbatim
3$ apply -0 who 1 2 3 4 5
3$ parallel -N0 who ::: 1 2 3 4 5
@end verbatim
@node To link all files in the current directory to the directory /usr/joe@comma{} enter:
@subsubsection To link all files in the current directory to the directory /usr/joe, enter:
@verbatim
4$ apply 'ln %1 /usr/joe' *
4$ parallel ln {} /usr/joe ::: *
@end verbatim
https://www-01.ibm.com/support/knowledgecenter/
ssw_aix_71/com.ibm.aix.cmds1/apply.htm
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN paexec AND GNU Parallel
@section DIFFERENCES BETWEEN paexec AND GNU Parallel
@strong{paexec} can run jobs in parallel on both the local and remote computers.
@strong{paexec} requires commands to print a blank line as the last
output. This means you will have to write a wrapper for most programs.
@strong{paexec} has a job dependency facility so a job can depend on another
job to be executed successfully. Sort of a poor-man's @strong{make}.
@menu
* EXAMPLES FROM paexec's EXAMPLE CATALOG::
@end menu
@node EXAMPLES FROM paexec's EXAMPLE CATALOG
@subsection EXAMPLES FROM paexec's EXAMPLE CATALOG
Here are the examples from @strong{paexec}'s example catalog with the equivalent
using GNU @strong{parallel}:
@menu
* 1_div_X_run::
* all_substr_run::
* cc_wrapper_run::
* toupper_run::
@end menu
@node 1_div_X_run
@subsubsection 1_div_X_run
@verbatim
1$ ../../paexec -s -l -c "`pwd`/1_div_X_cmd" -n +1 <<EOF [...]
1$ parallel echo {} '|' `pwd`/1_div_X_cmd <<EOF [...]
@end verbatim
@node all_substr_run
@subsubsection all_substr_run
@verbatim
2$ ../../paexec -lp -c "`pwd`/all_substr_cmd" -n +3 <<EOF [...]
2$ parallel echo {} '|' `pwd`/all_substr_cmd <<EOF [...]
@end verbatim
@node cc_wrapper_run
@subsubsection cc_wrapper_run
@verbatim
3$ ../../paexec -c "env CC=gcc CFLAGS=-O2 `pwd`/cc_wrapper_cmd" \
-n 'host1 host2' \
-t '/usr/bin/ssh -x' <<EOF [...]
3$ parallel echo {} '|' "env CC=gcc CFLAGS=-O2 `pwd`/cc_wrapper_cmd" \
-S host1,host2 <<EOF [...]
# This is not exactly the same, but avoids the wrapper
parallel gcc -O2 -c -o {.}.o {} \
-S host1,host2 <<EOF [...]
@end verbatim
@node toupper_run
@subsubsection toupper_run
@verbatim
4$ ../../paexec -lp -c "`pwd`/toupper_cmd" -n +10 <<EOF [...]
4$ parallel echo {} '|' ./toupper_cmd <<EOF [...]
# Without the wrapper:
parallel echo {} '| awk {print\ toupper\(\$0\)}' <<EOF [...]
@end verbatim
https://github.com/cheusov/paexec
(Last checked: 2010-12)
@node DIFFERENCES BETWEEN map(sitaramc) AND GNU Parallel
@section DIFFERENCES BETWEEN map(sitaramc) AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - I4 - - (I7)
@anchor{I1 - - I4 - - (I7)}
@item M1 (M2) M3 (M4) M5 M6
@anchor{M1 (M2) M3 (M4) M5 M6}
@item - O2 O3 - O5 - - x x O10
@anchor{- O2 O3 - O5 - - x x O10}
@item E1 - - - - - -
@anchor{E1 - - - - - - 1}
@item - - - - - - - - -
@anchor{- - - - - - - - - 2}
@item - -
@anchor{- - 3}
@end table
(I7): Only under special circumstances. See below.
(M2+M4): Only if there is a single replacement string.
@strong{map} rejects input with special characters:
@verbatim
echo "The Cure" > My\ brother\'s\ 12\"\ records
ls | map 'echo %; wc %'
@end verbatim
It works with GNU @strong{parallel}:
@verbatim
ls | parallel 'echo {}; wc {}'
@end verbatim
Under some circumstances it also works with @strong{map}:
@verbatim
ls | map 'echo % works %'
@end verbatim
But tiny changes make it reject the input with special characters:
@verbatim
ls | map 'echo % does not work "%"'
@end verbatim
This means that many UTF-8 characters will be rejected. This is by
design. From the web page: "As such, programs that @emph{quietly handle
them, with no warnings at all,} are doing their users a disservice."
@strong{map} delays each job by 0.01 s. This can be emulated by using
@strong{parallel --delay 0.01}.
@strong{map} prints '+' on stderr when a job starts, and '-' when a job
finishes. This cannot be disabled. @strong{parallel} has @strong{--bar} if you
need to see progress.
@strong{map}'s replacement strings (% %D %B %E) can be simulated in GNU
@strong{parallel} by putting this in @strong{~/.parallel/config}:
@verbatim
--rpl '%'
--rpl '%D $_=Q(::dirname($_));'
--rpl '%B s:.*/::;s:\.[^/.]+$::;'
--rpl '%E s:.*\.::'
@end verbatim
@strong{map} does not have an argument separator on the command line, but
uses the first argument as command. This makes quoting harder which again
may affect readability. Compare:
@verbatim
map -p 2 'perl -ne '"'"'/^\S+\s+\S+$/ and print $ARGV,"\n"'"'" *
parallel -q perl -ne '/^\S+\s+\S+$/ and print $ARGV,"\n"' ::: *
@end verbatim
@strong{map} can do multiple arguments with context replace, but not without
context replace:
@verbatim
parallel --xargs echo 'BEGIN{'{}'}END' ::: 1 2 3
map "echo 'BEGIN{'%'}END'" 1 2 3
@end verbatim
@strong{map} has no support for grouping. So this gives the wrong results:
@verbatim
parallel perl -e '\$a=\"1{}\"x10000000\;print\ \$a,\"\\n\"' '>' {} \
::: a b c d e f
ls -l a b c d e f
parallel -kP4 -n1 grep 1 ::: a b c d e f > out.par
map -n1 -p 4 'grep 1' a b c d e f > out.map-unbuf
map -n1 -p 4 'grep --line-buffered 1' a b c d e f > out.map-linebuf
map -n1 -p 1 'grep --line-buffered 1' a b c d e f > out.map-serial
ls -l out*
md5sum out*
@end verbatim
@menu
* EXAMPLES FROM map's WEBSITE::
@end menu
@node EXAMPLES FROM map's WEBSITE
@subsection EXAMPLES FROM map's WEBSITE
Here are the examples from @strong{map}'s web page with the equivalent using
GNU @strong{parallel}:
@verbatim
1$ ls *.gif | map convert % %B.png # default max-args: 1
1$ ls *.gif | parallel convert {} {.}.png
2$ map "mkdir %B; tar -C %B -xf %" *.tgz # default max-args: 1
2$ parallel 'mkdir {.}; tar -C {.} -xf {}' ::: *.tgz
3$ ls *.gif | map cp % /tmp # default max-args: 100
3$ ls *.gif | parallel -X cp {} /tmp
4$ ls *.tar | map -n 1 tar -xf %
4$ ls *.tar | parallel tar -xf
5$ map "cp % /tmp" *.tgz
5$ parallel cp {} /tmp ::: *.tgz
6$ map "du -sm /home/%/mail" alice bob carol
6$ parallel "du -sm /home/{}/mail" ::: alice bob carol
or if you prefer running a single job with multiple args:
6$ parallel -Xj1 "du -sm /home/{}/mail" ::: alice bob carol
7$ cat /etc/passwd | map -d: 'echo user %1 has shell %7'
7$ cat /etc/passwd | parallel --colsep : 'echo user {1} has shell {7}'
8$ export MAP_MAX_PROCS=$(( `nproc` / 2 ))
8$ export PARALLEL=-j50%
@end verbatim
https://github.com/sitaramc/map
(Last checked: 2020-05)
@node DIFFERENCES BETWEEN ladon AND GNU Parallel
@section DIFFERENCES BETWEEN ladon AND GNU Parallel
@strong{ladon} can run multiple jobs on files in parallel.
@strong{ladon} only works on files and the only way to specify files is
using a quoted glob string (such as \*.jpg). It is not possible to
list the files manually.
As replacement strings it uses FULLPATH DIRNAME BASENAME EXT RELDIR
RELPATH
These can be simulated using GNU @strong{parallel} by putting this in
@strong{~/.parallel/config}:
@verbatim
--rpl 'FULLPATH $_=Q($_);chomp($_=qx{readlink -f $_});'
--rpl 'DIRNAME $_=Q(::dirname($_));chomp($_=qx{readlink -f $_});'
--rpl 'BASENAME s:.*/::;s:\.[^/.]+$::;'
--rpl 'EXT s:.*\.::'
--rpl 'RELDIR $_=Q($_);chomp(($_,$c)=qx{readlink -f $_;pwd});
s:\Q$c/\E::;$_=::dirname($_);'
--rpl 'RELPATH $_=Q($_);chomp(($_,$c)=qx{readlink -f $_;pwd});
s:\Q$c/\E::;'
@end verbatim
@strong{ladon} deals badly with filenames containing " and newline, and it
fails for output larger than 200k:
@verbatim
ladon '*' -- seq 36000 | wc
@end verbatim
@menu
* EXAMPLES FROM ladon MANUAL::
@end menu
@node EXAMPLES FROM ladon MANUAL
@subsection EXAMPLES FROM ladon MANUAL
It is assumed that the '--rpl's above are put in @strong{~/.parallel/config}
and that it is run under a shell that supports '**' globbing (such as @strong{zsh}):
@verbatim
1$ ladon "**/*.txt" -- echo RELPATH
1$ parallel echo RELPATH ::: **/*.txt
2$ ladon "~/Documents/**/*.pdf" -- shasum FULLPATH >hashes.txt
2$ parallel shasum FULLPATH ::: ~/Documents/**/*.pdf >hashes.txt
3$ ladon -m thumbs/RELDIR "**/*.jpg" -- convert FULLPATH \
-thumbnail 100x100^ -gravity center -extent 100x100 \
thumbs/RELPATH
3$ parallel mkdir -p thumbs/RELDIR\; convert FULLPATH
-thumbnail 100x100^ -gravity center -extent 100x100 \
thumbs/RELPATH ::: **/*.jpg
4$ ladon "~/Music/*.wav" -- lame -V 2 FULLPATH DIRNAME/BASENAME.mp3
4$ parallel lame -V 2 FULLPATH DIRNAME/BASENAME.mp3 ::: ~/Music/*.wav
@end verbatim
https://github.com/danielgtaylor/ladon
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN jobflow AND GNU Parallel
@section DIFFERENCES BETWEEN jobflow AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - - - - I7
@anchor{I1 - - - - - I7}
@item - - M3 - - (M6)
@anchor{- - M3 - - (M6)}
@item O1 O2 O3 - O5 O6 (O7) - - O10
@anchor{O1 O2 O3 - O5 O6 (O7) - - O10}
@item E1 - - - - E6 -
@anchor{E1 - - - - E6 -}
@item - - - - - - - - -
@anchor{- - - - - - - - - 3}
@item - -
@anchor{- - 4}
@end table
@strong{jobflow} can run multiple jobs in parallel.
Just like @strong{xargs} output from @strong{jobflow} jobs running in parallel mix
together by default. @strong{jobflow} can buffer into files with
@strong{-buffered} (placed in /run/shm), but these are not cleaned up if
@strong{jobflow} dies unexpectedly (e.g. by Ctrl-C). If the total output is
big (in the order of RAM+swap) it can cause the system to slow to a
crawl and eventually run out of memory.
Just like @strong{xargs} redirection and composed commands require wrapping
with @strong{bash -c}.
Input lines can at most be 4096 bytes.
@strong{jobflow} is faster than GNU @strong{parallel} but around 6 times slower
than @strong{parallel-bash}.
@strong{jobflow} has no equivalent for @strong{--pipe}, or @strong{--sshlogin}.
@strong{jobflow} makes it possible to set resource limits on the running
jobs. This can be emulated by GNU @strong{parallel} using @strong{bash}'s @strong{ulimit}:
@verbatim
jobflow -limits=mem=100M,cpu=3,fsize=20M,nofiles=300 myjob
parallel 'ulimit -v 102400 -t 3 -f 204800 -n 300 myjob'
@end verbatim
@menu
* EXAMPLES FROM jobflow README::
@end menu
@node EXAMPLES FROM jobflow README
@subsection EXAMPLES FROM jobflow README
@verbatim
1$ cat things.list | jobflow -threads=8 -exec ./mytask {}
1$ cat things.list | parallel -j8 ./mytask {}
2$ seq 100 | jobflow -threads=100 -exec echo {}
2$ seq 100 | parallel -j100 echo {}
3$ cat urls.txt | jobflow -threads=32 -exec wget {}
3$ cat urls.txt | parallel -j32 wget {}
4$ find . -name '*.bmp' | \
jobflow -threads=8 -exec bmp2jpeg {.}.bmp {.}.jpg
4$ find . -name '*.bmp' | \
parallel -j8 bmp2jpeg {.}.bmp {.}.jpg
5$ seq 100 | jobflow -skip 10 -count 10
5$ seq 100 | parallel --filter '{1} > 10 and {1} <= 20' echo
5$ seq 100 | parallel echo '{= $_>10 and $_<=20 or skip() =}'
@end verbatim
https://github.com/rofl0r/jobflow
(Last checked: 2022-05)
@node DIFFERENCES BETWEEN gargs AND GNU Parallel
@section DIFFERENCES BETWEEN gargs AND GNU Parallel
@strong{gargs} can run multiple jobs in parallel.
Older versions cache output in memory. This causes it to be extremely
slow when the output is larger than the physical RAM, and can cause
the system to run out of memory.
See more details on this in @strong{man parallel_design}.
Newer versions cache output in files, but leave files in $TMPDIR if it
is killed.
Output to stderr (standard error) is changed if the command fails.
@menu
* EXAMPLES FROM gargs WEBSITE::
@end menu
@node EXAMPLES FROM gargs WEBSITE
@subsection EXAMPLES FROM gargs WEBSITE
@verbatim
1$ seq 12 -1 1 | gargs -p 4 -n 3 "sleep {0}; echo {1} {2}"
1$ seq 12 -1 1 | parallel -P 4 -n 3 "sleep {1}; echo {2} {3}"
2$ cat t.txt | gargs --sep "\s+" \
-p 2 "echo '{0}:{1}-{2}' full-line: \'{}\'"
2$ cat t.txt | parallel --colsep "\\s+" \
-P 2 "echo '{1}:{2}-{3}' full-line: \'{}\'"
@end verbatim
https://github.com/brentp/gargs
(Last checked: 2016-08)
@node DIFFERENCES BETWEEN orgalorg AND GNU Parallel
@section DIFFERENCES BETWEEN orgalorg AND GNU Parallel
@strong{orgalorg} can run the same job on multiple machines. This is related
to @strong{--onall} and @strong{--nonall}.
@strong{orgalorg} supports entering the SSH password - provided it is the
same for all servers. GNU @strong{parallel} advocates using @strong{ssh-agent}
instead, but it is possible to emulate @strong{orgalorg}'s behavior by
setting SSHPASS and by using @strong{--ssh "sshpass ssh"}.
To make the emulation easier, make a simple alias:
@verbatim
alias par_emul="parallel -j0 --ssh 'sshpass ssh' --nonall --tag --lb"
@end verbatim
If you want to supply a password run:
@verbatim
SSHPASS=`ssh-askpass`
@end verbatim
or set the password directly:
@verbatim
SSHPASS=P4$$w0rd!
@end verbatim
If the above is set up you can then do:
@verbatim
orgalorg -o frontend1 -o frontend2 -p -C uptime
par_emul -S frontend1 -S frontend2 uptime
orgalorg -o frontend1 -o frontend2 -p -C top -bid 1
par_emul -S frontend1 -S frontend2 top -bid 1
orgalorg -o frontend1 -o frontend2 -p -er /tmp -n \
'md5sum /tmp/bigfile' -S bigfile
par_emul -S frontend1 -S frontend2 --basefile bigfile \
--workdir /tmp md5sum /tmp/bigfile
@end verbatim
@strong{orgalorg} has a progress indicator for the transferring of a
file. GNU @strong{parallel} does not.
https://github.com/reconquest/orgalorg
(Last checked: 2016-08)
@node DIFFERENCES BETWEEN Rust parallel(mmstick) AND GNU Parallel
@section DIFFERENCES BETWEEN Rust parallel(mmstick) AND GNU Parallel
Rust parallel focuses on speed. It is almost as fast as @strong{xargs}, but
not as fast as @strong{parallel-bash}. It implements a few features from GNU
@strong{parallel}, but lacks many functions. All these fail:
@verbatim
# Read arguments from file
parallel -a file echo
# Changing the delimiter
parallel -d _ echo ::: a_b_c_
@end verbatim
These do something different from GNU @strong{parallel}
@verbatim
# -q to protect quoted $ and space
parallel -q perl -e '$a=shift; print "$a"x10000000' ::: a b c
# Generation of combination of inputs
parallel echo {1} {2} ::: red green blue ::: S M L XL XXL
# {= perl expression =} replacement string
parallel echo '{= s/new/old/ =}' ::: my.new your.new
# --pipe
seq 100000 | parallel --pipe wc
# linked arguments
parallel echo ::: S M L :::+ sml med lrg ::: R G B :::+ red grn blu
# Run different shell dialects
zsh -c 'parallel echo \={} ::: zsh && true'
csh -c 'parallel echo \$\{\} ::: shell && true'
bash -c 'parallel echo \$\({}\) ::: pwd && true'
# Rust parallel does not start before the last argument is read
(seq 10; sleep 5; echo 2) | time parallel -j2 'sleep 2; echo'
tail -f /var/log/syslog | parallel echo
@end verbatim
Most of the examples from the book GNU Parallel 2018 do not work, thus
Rust parallel is not close to being a compatible replacement.
Rust parallel has no remote facilities.
It uses /tmp/parallel for tmp files and does not clean up if
terminated abruptly. If another user on the system uses Rust parallel,
then /tmp/parallel will have the wrong permissions and Rust parallel
will fail. A malicious user can setup the right permissions and
symlink the output file to one of the user's files and next time the
user uses Rust parallel it will overwrite this file.
@verbatim
attacker$ mkdir /tmp/parallel
attacker$ chmod a+rwX /tmp/parallel
# Symlink to the file the attacker wants to zero out
attacker$ ln -s ~victim/.important-file /tmp/parallel/stderr_1
victim$ seq 1000 | parallel echo
# This file is now overwritten with stderr from 'echo'
victim$ cat ~victim/.important-file
@end verbatim
If /tmp/parallel runs full during the run, Rust parallel does not
report this, but finishes with success - thereby risking data loss.
https://github.com/mmstick/parallel
(Last checked: 2016-08)
@node DIFFERENCES BETWEEN Rush AND GNU Parallel
@section DIFFERENCES BETWEEN Rush AND GNU Parallel
@strong{rush} (https://github.com/shenwei356/rush) is written in Go and
based on @strong{gargs}.
Just like GNU @strong{parallel} @strong{rush} buffers in temporary files. But
opposite GNU @strong{parallel} @strong{rush} does not clean up, if the process
dies abnormally.
@strong{rush} has some string manipulations that can be emulated by putting
this into ~/.parallel/config (/ is used instead of %, and % is used
instead of ^ as that is closer to bash's $@{var%postfix@}):
@verbatim
--rpl '{:} s:(\.[^/]+)*$::'
--rpl '{:%([^}]+?)} s:$$1(\.[^/]+)*$::'
--rpl '{/:%([^}]*?)} s:.*/(.*)$$1(\.[^/]+)*$:$1:'
--rpl '{/:} s:(.*/)?([^/.]+)(\.[^/]+)*$:$2:'
--rpl '{@(.*?)} /$$1/ and $_=$1;'
@end verbatim
@menu
* EXAMPLES FROM rush's WEBSITE::
* Other @strong{rush} features::
@end menu
@node EXAMPLES FROM rush's WEBSITE
@subsection EXAMPLES FROM rush's WEBSITE
Here are the examples from @strong{rush}'s website with the equivalent
command in GNU @strong{parallel}.
@strong{1. Simple run, quoting is not necessary}
@verbatim
1$ seq 1 3 | rush echo {}
1$ seq 1 3 | parallel echo {}
@end verbatim
@strong{2. Read data from file (`-i`)}
@verbatim
2$ rush echo {} -i data1.txt -i data2.txt
2$ cat data1.txt data2.txt | parallel echo {}
@end verbatim
@strong{3. Keep output order (`-k`)}
@verbatim
3$ seq 1 3 | rush 'echo {}' -k
3$ seq 1 3 | parallel -k echo {}
@end verbatim
@strong{4. Timeout (`-t`)}
@verbatim
4$ time seq 1 | rush 'sleep 2; echo {}' -t 1
4$ time seq 1 | parallel --timeout 1 'sleep 2; echo {}'
@end verbatim
@strong{5. Retry (`-r`)}
@verbatim
5$ seq 1 | rush 'python unexisted_script.py' -r 1
5$ seq 1 | parallel --retries 2 'python unexisted_script.py'
@end verbatim
Use @strong{-u} to see it is really run twice:
@verbatim
5$ seq 1 | parallel -u --retries 2 'python unexisted_script.py'
@end verbatim
@strong{6. Dirname (`@{/@}`) and basename (`@{%@}`) and remove custom
suffix (`@{^suffix@}`)}
@verbatim
6$ echo dir/file_1.txt.gz | rush 'echo {/} {%} {^_1.txt.gz}'
6$ echo dir/file_1.txt.gz |
parallel --plus echo {//} {/} {%_1.txt.gz}
@end verbatim
@strong{7. Get basename, and remove last (`@{.@}`) or any (`@{:@}`) extension}
@verbatim
7$ echo dir.d/file.txt.gz | rush 'echo {.} {:} {%.} {%:}'
7$ echo dir.d/file.txt.gz | parallel 'echo {.} {:} {/.} {/:}'
@end verbatim
@strong{8. Job ID, combine fields index and other replacement strings}
@verbatim
8$ echo 12 file.txt dir/s_1.fq.gz |
rush 'echo job {#}: {2} {2.} {3%:^_1}'
8$ echo 12 file.txt dir/s_1.fq.gz |
parallel --colsep ' ' 'echo job {#}: {2} {2.} {3/:%_1}'
@end verbatim
@strong{9. Capture submatch using regular expression (`@{@@regexp@}`)}
@verbatim
9$ echo read_1.fq.gz | rush 'echo {@(.+)_\d}'
9$ echo read_1.fq.gz | parallel 'echo {@(.+)_\d}'
@end verbatim
@strong{10. Custom field delimiter (`-d`)}
@verbatim
10$ echo a=b=c | rush 'echo {1} {2} {3}' -d =
10$ echo a=b=c | parallel -d = echo {1} {2} {3}
@end verbatim
@strong{11. Send multi-lines to every command (`-n`)}
@verbatim
11$ seq 5 | rush -n 2 -k 'echo "{}"; echo'
11$ seq 5 |
parallel -n 2 -k \
'echo {=-1 $_=join"\n",@arg[1..$#arg] =}; echo'
11$ seq 5 | rush -n 2 -k 'echo "{}"; echo' -J ' '
11$ seq 5 | parallel -n 2 -k 'echo {}; echo'
@end verbatim
@strong{12. Custom record delimiter (`-D`), note that empty records are not used.}
@verbatim
12$ echo a b c d | rush -D " " -k 'echo {}'
12$ echo a b c d | parallel -d " " -k 'echo {}'
12$ echo abcd | rush -D "" -k 'echo {}'
Cannot be done by GNU Parallel
12$ cat fasta.fa
>seq1
tag
>seq2
cat
gat
>seq3
attac
a
cat
12$ cat fasta.fa | rush -D ">" \
'echo FASTA record {#}: name: {1} sequence: {2}' -k -d "\n"
# rush fails to join the multiline sequences
12$ cat fasta.fa | (read -n1 ignore_first_char;
parallel -d '>' --colsep '\n' echo FASTA record {#}: \
name: {1} sequence: '{=2 $_=join"",@arg[2..$#arg]=}'
)
@end verbatim
@strong{13. Assign value to variable, like `awk -v` (`-v`)}
@verbatim
13$ seq 1 |
rush 'echo Hello, {fname} {lname}!' -v fname=Wei -v lname=Shen
13$ seq 1 |
parallel -N0 \
'fname=Wei; lname=Shen; echo Hello, ${fname} ${lname}!'
13$ for var in a b; do \
13$ seq 1 3 | rush -k -v var=$var 'echo var: {var}, data: {}'; \
13$ done
@end verbatim
In GNU @strong{parallel} you would typically do:
@verbatim
13$ seq 1 3 | parallel -k echo var: {1}, data: {2} ::: a b :::: -
@end verbatim
If you @emph{really} want the var:
@verbatim
13$ seq 1 3 |
parallel -k var={1} ';echo var: $var, data: {}' ::: a b :::: -
@end verbatim
If you @emph{really} want the @strong{for}-loop:
@verbatim
13$ for var in a b; do
export var;
seq 1 3 | parallel -k 'echo var: $var, data: {}';
done
@end verbatim
Contrary to @strong{rush} this also works if the value is complex like:
@verbatim
My brother's 12" records
@end verbatim
@strong{14. Preset variable (`-v`), avoid repeatedly writing verbose replacement strings}
@verbatim
14$ # naive way
echo read_1.fq.gz | rush 'echo {:^_1} {:^_1}_2.fq.gz'
14$ echo read_1.fq.gz | parallel 'echo {:%_1} {:%_1}_2.fq.gz'
14$ # macro + removing suffix
echo read_1.fq.gz |
rush -v p='{:^_1}' 'echo {p} {p}_2.fq.gz'
14$ echo read_1.fq.gz |
parallel 'p={:%_1}; echo $p ${p}_2.fq.gz'
14$ # macro + regular expression
echo read_1.fq.gz | rush -v p='{@(.+?)_\d}' 'echo {p} {p}_2.fq.gz'
14$ echo read_1.fq.gz | parallel 'p={@(.+?)_\d}; echo $p ${p}_2.fq.gz'
@end verbatim
Contrary to @strong{rush} GNU @strong{parallel} works with complex values:
@verbatim
14$ echo "My brother's 12\"read_1.fq.gz" |
parallel 'p={@(.+?)_\d}; echo $p ${p}_2.fq.gz'
@end verbatim
@strong{15. Interrupt jobs by `Ctrl-C`, rush will stop unfinished commands and exit.}
@verbatim
15$ seq 1 20 | rush 'sleep 1; echo {}'
^C
15$ seq 1 20 | parallel 'sleep 1; echo {}'
^C
@end verbatim
@strong{16. Continue/resume jobs (`-c`). When some jobs failed (by
execution failure, timeout, or canceling by user with `Ctrl + C`),
please switch flag `-c/--continue` on and run again, so that `rush`
can save successful commands and ignore them in @emph{NEXT} run.}
@verbatim
16$ seq 1 3 | rush 'sleep {}; echo {}' -t 3 -c
cat successful_cmds.rush
seq 1 3 | rush 'sleep {}; echo {}' -t 3 -c
16$ seq 1 3 | parallel --joblog mylog --timeout 2 \
'sleep {}; echo {}'
cat mylog
seq 1 3 | parallel --joblog mylog --retry-failed \
'sleep {}; echo {}'
@end verbatim
Multi-line jobs:
@verbatim
16$ seq 1 3 | rush 'sleep {}; echo {}; \
echo finish {}' -t 3 -c -C finished.rush
cat finished.rush
seq 1 3 | rush 'sleep {}; echo {}; \
echo finish {}' -t 3 -c -C finished.rush
16$ seq 1 3 |
parallel --joblog mylog --timeout 2 'sleep {}; echo {}; \
echo finish {}'
cat mylog
seq 1 3 |
parallel --joblog mylog --retry-failed 'sleep {}; echo {}; \
echo finish {}'
@end verbatim
@strong{17. A comprehensive example: downloading 1K+ pages given by
three URL list files using `phantomjs save_page.js` (some page
contents are dynamically generated by Javascript, so `wget` does not
work). Here I set max jobs number (`-j`) as `20`, each job has a max
running time (`-t`) of `60` seconds and `3` retry changes
(`-r`). Continue flag `-c` is also switched on, so we can continue
unfinished jobs. Luckily, it's accomplished in one run :)}
@verbatim
17$ for f in $(seq 2014 2016); do \
/bin/rm -rf $f; mkdir -p $f; \
cat $f.html.txt | rush -v d=$f -d = \
'phantomjs save_page.js "{}" > {d}/{3}.html' \
-j 20 -t 60 -r 3 -c; \
done
@end verbatim
GNU @strong{parallel} can append to an existing joblog with '+':
@verbatim
17$ rm mylog
for f in $(seq 2014 2016); do
/bin/rm -rf $f; mkdir -p $f;
cat $f.html.txt |
parallel -j20 --timeout 60 --retries 4 --joblog +mylog \
--colsep = \
phantomjs save_page.js {1}={2}={3} '>' $f/{3}.html
done
@end verbatim
@strong{18. A bioinformatics example: mapping with `bwa`, and
processing result with `samtools`:}
@verbatim
18$ ref=ref/xxx.fa
threads=25
ls -d raw.cluster.clean.mapping/* \
| rush -v ref=$ref -v j=$threads -v p='{}/{%}' \
'bwa mem -t {j} -M -a {ref} {p}_1.fq.gz {p}_2.fq.gz >{p}.sam;\
samtools view -bS {p}.sam > {p}.bam; \
samtools sort -T {p}.tmp -@ {j} {p}.bam -o {p}.sorted.bam; \
samtools index {p}.sorted.bam; \
samtools flagstat {p}.sorted.bam > {p}.sorted.bam.flagstat; \
/bin/rm {p}.bam {p}.sam;' \
-j 2 --verbose -c -C mapping.rush
@end verbatim
GNU @strong{parallel} would use a function:
@verbatim
18$ ref=ref/xxx.fa
export ref
thr=25
export thr
bwa_sam() {
p="$1"
bam="$p".bam
sam="$p".sam
sortbam="$p".sorted.bam
bwa mem -t $thr -M -a $ref ${p}_1.fq.gz ${p}_2.fq.gz > "$sam"
samtools view -bS "$sam" > "$bam"
samtools sort -T ${p}.tmp -@ $thr "$bam" -o "$sortbam"
samtools index "$sortbam"
samtools flagstat "$sortbam" > "$sortbam".flagstat
/bin/rm "$bam" "$sam"
}
export -f bwa_sam
ls -d raw.cluster.clean.mapping/* |
parallel -j 2 --verbose --joblog mylog bwa_sam
@end verbatim
@node Other @strong{rush} features
@subsection Other @strong{rush} features
@strong{rush} has:
@itemize
@item @strong{awk -v} like custom defined variables (@strong{-v})
With GNU @strong{parallel} you would simply set a shell variable:
@verbatim
parallel 'v={}; echo "$v"' ::: foo
echo foo | rush -v v={} 'echo {v}'
@end verbatim
Also @strong{rush} does not like special chars. So these @strong{do not work}:
@verbatim
echo does not work | rush -v v=\" 'echo {v}'
echo "My brother's 12\" records" | rush -v v={} 'echo {v}'
@end verbatim
Whereas the corresponding GNU @strong{parallel} version works:
@verbatim
parallel 'v=\"; echo "$v"' ::: works
parallel 'v={}; echo "$v"' ::: "My brother's 12\" records"
@end verbatim
@item Exit on first error(s) (-e)
This is called @strong{--halt now,fail=1} (or shorter: @strong{--halt 2}) when
used with GNU @strong{parallel}.
@item Settable records sending to every command (@strong{-n}, default 1)
This is also called @strong{-n} in GNU @strong{parallel}.
@item Practical replacement strings
@table @asis
@item @{:@} remove any extension
@anchor{@{:@} remove any extension}
With GNU @strong{parallel} this can be emulated by:
@verbatim
parallel --plus echo '{/\..*/}' ::: foo.ext.bar.gz
@end verbatim
@item @{^suffix@}, remove suffix
@anchor{@{^suffix@}@comma{} remove suffix}
With GNU @strong{parallel} this can be emulated by:
@verbatim
parallel --plus echo '{%.bar.gz}' ::: foo.ext.bar.gz
@end verbatim
@item @{@@regexp@}, capture submatch using regular expression
@anchor{@{@@regexp@}@comma{} capture submatch using regular expression}
With GNU @strong{parallel} this can be emulated by:
@verbatim
parallel --rpl '{@(.*?)} /$$1/ and $_=$1;' \
echo '{@\d_(.*).gz}' ::: 1_foo.gz
@end verbatim
@item @{%.@}, @{%:@}, basename without extension
@anchor{@{%.@}@comma{} @{%:@}@comma{} basename without extension}
With GNU @strong{parallel} this can be emulated by:
@verbatim
parallel echo '{= s:.*/::;s/\..*// =}' ::: dir/foo.bar.gz
@end verbatim
And if you need it often, you define a @strong{--rpl} in
@strong{$HOME/.parallel/config}:
@verbatim
--rpl '{%.} s:.*/::;s/\..*//'
--rpl '{%:} s:.*/::;s/\..*//'
@end verbatim
Then you can use them as:
@verbatim
parallel echo {%.} {%:} ::: dir/foo.bar.gz
@end verbatim
@end table
@item Preset variable (macro)
E.g.
@verbatim
echo foosuffix | rush -v p={^suffix} 'echo {p}_new_suffix'
@end verbatim
With GNU @strong{parallel} this can be emulated by:
@verbatim
echo foosuffix |
parallel --plus 'p={%suffix}; echo ${p}_new_suffix'
@end verbatim
Opposite @strong{rush} GNU @strong{parallel} works fine if the input contains
double space, ' and ":
@verbatim
echo "1'6\" foosuffix" |
parallel --plus 'p={%suffix}; echo "${p}"_new_suffix'
@end verbatim
@item Commands of multi-lines
While you @emph{can} use multi-lined commands in GNU @strong{parallel}, to
improve readability GNU @strong{parallel} discourages the use of multi-line
commands. In most cases it can be written as a function:
@verbatim
seq 1 3 |
parallel --timeout 2 --joblog my.log 'sleep {}; echo {}; \
echo finish {}'
@end verbatim
Could be written as:
@verbatim
doit() {
sleep "$1"
echo "$1"
echo finish "$1"
}
export -f doit
seq 1 3 | parallel --timeout 2 --joblog my.log doit
@end verbatim
The failed commands can be resumed with:
@verbatim
seq 1 3 |
parallel --resume-failed --joblog my.log 'sleep {}; echo {};\
echo finish {}'
@end verbatim
@end itemize
https://github.com/shenwei356/rush
(Last checked: 2017-05)
@node DIFFERENCES BETWEEN ClusterSSH AND GNU Parallel
@section DIFFERENCES BETWEEN ClusterSSH AND GNU Parallel
ClusterSSH solves a different problem than GNU @strong{parallel}.
ClusterSSH opens a terminal window for each computer and using a
master window you can run the same command on all the computers. This
is typically used for administrating several computers that are almost
identical.
GNU @strong{parallel} runs the same (or different) commands with different
arguments in parallel possibly using remote computers to help
computing. If more than one computer is listed in @strong{-S} GNU @strong{parallel} may
only use one of these (e.g. if there are 8 jobs to be run and one
computer has 8 cores).
GNU @strong{parallel} can be used as a poor-man's version of ClusterSSH:
@strong{parallel --nonall -S server-a,server-b do_stuff foo bar}
https://github.com/duncs/clusterssh
(Last checked: 2010-12)
@node DIFFERENCES BETWEEN coshell AND GNU Parallel
@section DIFFERENCES BETWEEN coshell AND GNU Parallel
@strong{coshell} only accepts full commands on standard input. Any quoting
needs to be done by the user.
Commands are run in @strong{sh} so any @strong{bash}/@strong{tcsh}/@strong{zsh} specific
syntax will not work.
Output can be buffered by using @strong{-d}. Output is buffered in memory,
so big output can cause swapping and therefore be terrible slow or
even cause out of memory.
https://github.com/gdm85/coshell
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN spread AND GNU Parallel
@section DIFFERENCES BETWEEN spread AND GNU Parallel
@strong{spread} runs commands on all directories.
It can be emulated with GNU @strong{parallel} using this Bash function:
@verbatim
spread() {
_cmds() {
perl -e '$"=" && ";print "@ARGV"' "cd {}" "$@"
}
parallel $(_cmds "$@")'|| echo exit status $?' ::: */
}
@end verbatim
This works except for the @strong{--exclude} option.
(Last checked: 2017-11)
@node DIFFERENCES BETWEEN pyargs AND GNU Parallel
@section DIFFERENCES BETWEEN pyargs AND GNU Parallel
@strong{pyargs} deals badly with input containing spaces. It buffers stdout,
but not stderr. It buffers in RAM. @{@} does not work as replacement
string. It does not support running functions.
@strong{pyargs} does not support composed commands if run with @strong{--lines},
and fails on @strong{pyargs traceroute gnu.org fsf.org}.
@menu
* Examples::
@end menu
@node Examples
@subsection Examples
@verbatim
seq 5 | pyargs -P50 -L seq
seq 5 | parallel -P50 --lb seq
seq 5 | pyargs -P50 --mark -L seq
seq 5 | parallel -P50 --lb \
--tagstring OUTPUT'[{= $_=$job->replaced() =}]' seq
# Similar, but not precisely the same
seq 5 | parallel -P50 --lb --tag seq
seq 5 | pyargs -P50 --mark command
# Somewhat longer with GNU Parallel due to the special
# --mark formatting
cmd="$(echo "command" | parallel --shellquote)"
wrap_cmd() {
echo "MARK $cmd $@================================" >&3
echo "OUTPUT START[$cmd $@]:"
eval $cmd "$@"
echo "OUTPUT END[$cmd $@]"
}
(seq 5 | env_parallel -P2 wrap_cmd) 3>&1
# Similar, but not exactly the same
seq 5 | parallel -t --tag command
(echo '1 2 3';echo 4 5 6) | pyargs --stream seq
(echo '1 2 3';echo 4 5 6) | perl -pe 's/\n/ /' |
parallel -r -d' ' seq
# Similar, but not exactly the same
parallel seq ::: 1 2 3 4 5 6
@end verbatim
https://github.com/robertblackwell/pyargs
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN concurrently AND GNU Parallel
@section DIFFERENCES BETWEEN concurrently AND GNU Parallel
@strong{concurrently} runs jobs in parallel.
The output is prepended with the job number, and may be incomplete:
@verbatim
$ concurrently 'seq 100000' | (sleep 3;wc -l)
7165
@end verbatim
When pretty printing it caches output in memory. Output mixes by using
test MIX below whether or not output is cached.
There seems to be no way of making a template command and have
@strong{concurrently} fill that with different args. The full commands must
be given on the command line.
There is also no way of controlling how many jobs should be run in
parallel at a time - i.e. "number of jobslots". Instead all jobs are
simply started in parallel.
https://github.com/kimmobrunfeldt/concurrently
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN map(soveran) AND GNU Parallel
@section DIFFERENCES BETWEEN map(soveran) AND GNU Parallel
@strong{map} does not run jobs in parallel by default. The README suggests using:
@verbatim
... | map t 'sleep $t && say done &'
@end verbatim
But this fails if more jobs are run in parallel than the number of
available processes. Since there is no support for parallelization in
@strong{map} itself, the output also mixes:
@verbatim
seq 10 | map i 'echo start-$i && sleep 0.$i && echo end-$i &'
@end verbatim
The major difference is that GNU @strong{parallel} is built for parallelization
and @strong{map} is not. So GNU @strong{parallel} has lots of ways of dealing with the
issues that parallelization raises:
@itemize
@item Keep the number of processes manageable
@item Make sure output does not mix
@item Make Ctrl-C kill all running processes
@end itemize
@menu
* EXAMPLES FROM maps WEBSITE::
@end menu
@node EXAMPLES FROM maps WEBSITE
@subsection EXAMPLES FROM maps WEBSITE
Here are the 5 examples converted to GNU Parallel:
@verbatim
1$ ls *.c | map f 'foo $f'
1$ ls *.c | parallel foo
2$ ls *.c | map f 'foo $f; bar $f'
2$ ls *.c | parallel 'foo {}; bar {}'
3$ cat urls | map u 'curl -O $u'
3$ cat urls | parallel curl -O
4$ printf "1\n1\n1\n" | map t 'sleep $t && say done'
4$ printf "1\n1\n1\n" | parallel 'sleep {} && say done'
4$ parallel 'sleep {} && say done' ::: 1 1 1
5$ printf "1\n1\n1\n" | map t 'sleep $t && say done &'
5$ printf "1\n1\n1\n" | parallel -j0 'sleep {} && say done'
5$ parallel -j0 'sleep {} && say done' ::: 1 1 1
@end verbatim
https://github.com/soveran/map
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN loop AND GNU Parallel
@section DIFFERENCES BETWEEN loop AND GNU Parallel
@strong{loop} mixes stdout and stderr:
@verbatim
loop 'ls /no-such-file' >/dev/null
@end verbatim
@strong{loop}'s replacement string @strong{$ITEM} does not quote strings:
@verbatim
echo 'two spaces' | loop 'echo $ITEM'
@end verbatim
@strong{loop} cannot run functions:
@verbatim
myfunc() { echo joe; }
export -f myfunc
loop 'myfunc this fails'
@end verbatim
@menu
* EXAMPLES FROM loop's WEBSITE::
@end menu
@node EXAMPLES FROM loop's WEBSITE
@subsection EXAMPLES FROM loop's WEBSITE
Some of the examples from https://github.com/Miserlou/Loop/ can be
emulated with GNU @strong{parallel}:
@verbatim
# A couple of functions will make the code easier to read
$ loopy() {
yes | parallel -uN0 -j1 "$@"
}
$ export -f loopy
$ time_out() {
parallel -uN0 -q --timeout "$@" ::: 1
}
$ match() {
perl -0777 -ne 'grep /'"$1"'/,$_ and print or exit 1'
}
$ export -f match
$ loop 'ls' --every 10s
$ loopy --delay 10s ls
$ loop 'touch $COUNT.txt' --count-by 5
$ loopy touch '{= $_=seq()*5 =}'.txt
$ loop --until-contains 200 -- \
./get_response_code.sh --site mysite.biz`
$ loopy --halt now,success=1 \
'./get_response_code.sh --site mysite.biz | match 200'
$ loop './poke_server' --for-duration 8h
$ time_out 8h loopy ./poke_server
$ loop './poke_server' --until-success
$ loopy --halt now,success=1 ./poke_server
$ cat files_to_create.txt | loop 'touch $ITEM'
$ cat files_to_create.txt | parallel touch {}
$ loop 'ls' --for-duration 10min --summary
# --joblog is somewhat more verbose than --summary
$ time_out 10m loopy --joblog my.log ./poke_server; cat my.log
$ loop 'echo hello'
$ loopy echo hello
$ loop 'echo $COUNT'
# GNU Parallel counts from 1
$ loopy echo {#}
# Counting from 0 can be forced
$ loopy echo '{= $_=seq()-1 =}'
$ loop 'echo $COUNT' --count-by 2
$ loopy echo '{= $_=2*(seq()-1) =}'
$ loop 'echo $COUNT' --count-by 2 --offset 10
$ loopy echo '{= $_=10+2*(seq()-1) =}'
$ loop 'echo $COUNT' --count-by 1.1
# GNU Parallel rounds 3.3000000000000003 to 3.3
$ loopy echo '{= $_=1.1*(seq()-1) =}'
$ loop 'echo $COUNT $ACTUALCOUNT' --count-by 2
$ loopy echo '{= $_=2*(seq()-1) =} {#}'
$ loop 'echo $COUNT' --num 3 --summary
# --joblog is somewhat more verbose than --summary
$ seq 3 | parallel --joblog my.log echo; cat my.log
$ loop 'ls -foobarbatz' --num 3 --summary
# --joblog is somewhat more verbose than --summary
$ seq 3 | parallel --joblog my.log -N0 ls -foobarbatz; cat my.log
$ loop 'echo $COUNT' --count-by 2 --num 50 --only-last
# Can be emulated by running 2 jobs
$ seq 49 | parallel echo '{= $_=2*(seq()-1) =}' >/dev/null
$ echo 50| parallel echo '{= $_=2*(seq()-1) =}'
$ loop 'date' --every 5s
$ loopy --delay 5s date
$ loop 'date' --for-duration 8s --every 2s
$ time_out 8s loopy --delay 2s date
$ loop 'date -u' --until-time '2018-05-25 20:50:00' --every 5s
$ seconds=$((`date -d 2019-05-25T20:50:00 +%s` - `date +%s`))s
$ time_out $seconds loopy --delay 5s date -u
$ loop 'echo $RANDOM' --until-contains "666"
$ loopy --halt now,success=1 'echo $RANDOM | match 666'
$ loop 'if (( RANDOM % 2 )); then
(echo "TRUE"; true);
else
(echo "FALSE"; false);
fi' --until-success
$ loopy --halt now,success=1 'if (( $RANDOM % 2 )); then
(echo "TRUE"; true);
else
(echo "FALSE"; false);
fi'
$ loop 'if (( RANDOM % 2 )); then
(echo "TRUE"; true);
else
(echo "FALSE"; false);
fi' --until-error
$ loopy --halt now,fail=1 'if (( $RANDOM % 2 )); then
(echo "TRUE"; true);
else
(echo "FALSE"; false);
fi'
$ loop 'date' --until-match "(\d{4})"
$ loopy --halt now,success=1 'date | match [0-9][0-9][0-9][0-9]'
$ loop 'echo $ITEM' --for red,green,blue
$ parallel echo ::: red green blue
$ cat /tmp/my-list-of-files-to-create.txt | loop 'touch $ITEM'
$ cat /tmp/my-list-of-files-to-create.txt | parallel touch
$ ls | loop 'cp $ITEM $ITEM.bak'; ls
$ ls | parallel cp {} {}.bak; ls
$ loop 'echo $ITEM | tr a-z A-Z' -i
$ parallel 'echo {} | tr a-z A-Z'
# Or more efficiently:
$ parallel --pipe tr a-z A-Z
$ loop 'echo $ITEM' --for "`ls`"
$ parallel echo {} ::: "`ls`"
$ ls | loop './my_program $ITEM' --until-success;
$ ls | parallel --halt now,success=1 ./my_program {}
$ ls | loop './my_program $ITEM' --until-fail;
$ ls | parallel --halt now,fail=1 ./my_program {}
$ ./deploy.sh;
loop 'curl -sw "%{http_code}" http://coolwebsite.biz' \
--every 5s --until-contains 200;
./announce_to_slack.sh
$ ./deploy.sh;
loopy --delay 5s --halt now,success=1 \
'curl -sw "%{http_code}" http://coolwebsite.biz | match 200';
./announce_to_slack.sh
$ loop "ping -c 1 mysite.com" --until-success; ./do_next_thing
$ loopy --halt now,success=1 ping -c 1 mysite.com; ./do_next_thing
$ ./create_big_file -o my_big_file.bin;
loop 'ls' --until-contains 'my_big_file.bin';
./upload_big_file my_big_file.bin
# inotifywait is a better tool to detect file system changes.
# It can even make sure the file is complete
# so you are not uploading an incomplete file
$ inotifywait -qmre MOVED_TO -e CLOSE_WRITE --format %w%f . |
grep my_big_file.bin
$ ls | loop 'cp $ITEM $ITEM.bak'
$ ls | parallel cp {} {}.bak
$ loop './do_thing.sh' --every 15s --until-success --num 5
$ parallel --retries 5 --delay 15s ::: ./do_thing.sh
@end verbatim
https://github.com/Miserlou/Loop/
(Last checked: 2018-10)
@node DIFFERENCES BETWEEN lorikeet AND GNU Parallel
@section DIFFERENCES BETWEEN lorikeet AND GNU Parallel
@strong{lorikeet} can run jobs in parallel. It does this based on a
dependency graph described in a file, so this is similar to @strong{make}.
https://github.com/cetra3/lorikeet
(Last checked: 2018-10)
@node DIFFERENCES BETWEEN spp AND GNU Parallel
@section DIFFERENCES BETWEEN spp AND GNU Parallel
@strong{spp} can run jobs in parallel. @strong{spp} does not use a command
template to generate the jobs, but requires jobs to be in a
file. Output from the jobs mix.
https://github.com/john01dav/spp
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN paral AND GNU Parallel
@section DIFFERENCES BETWEEN paral AND GNU Parallel
@strong{paral} prints a lot of status information and stores the output from
the commands run into files. This means it cannot be used the middle
of a pipe like this
@verbatim
paral "echo this" "echo does not" "echo work" | wc
@end verbatim
Instead it puts the output into files named like
@strong{out_#_@emph{command}.out.log}. To get a very similar behaviour with GNU
@strong{parallel} use @strong{--results
'out_@{#@}_@{=s/[^\sa-z_0-9]//g;s/\s+/_/g=@}.log' --eta}
@strong{paral} only takes arguments on the command line and each argument
should be a full command. Thus it does not use command templates.
This limits how many jobs it can run in total, because they all need
to fit on a single command line.
@strong{paral} has no support for running jobs remotely.
@menu
* EXAMPLES FROM README.markdown::
@end menu
@node EXAMPLES FROM README.markdown
@subsection EXAMPLES FROM README.markdown
The examples from @strong{README.markdown} and the corresponding command run
with GNU @strong{parallel} (@strong{--results
'out_@{#@}_@{=s/[^\sa-z_0-9]//g;s/\s+/_/g=@}.log' --eta} is omitted from
the GNU @strong{parallel} command):
@verbatim
1$ paral "command 1" "command 2 --flag" "command arg1 arg2"
1$ parallel ::: "command 1" "command 2 --flag" "command arg1 arg2"
2$ paral "sleep 1 && echo c1" "sleep 2 && echo c2" \
"sleep 3 && echo c3" "sleep 4 && echo c4" "sleep 5 && echo c5"
2$ parallel ::: "sleep 1 && echo c1" "sleep 2 && echo c2" \
"sleep 3 && echo c3" "sleep 4 && echo c4" "sleep 5 && echo c5"
# Or shorter:
parallel "sleep {} && echo c{}" ::: {1..5}
3$ paral -n=0 "sleep 5 && echo c5" "sleep 4 && echo c4" \
"sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1"
3$ parallel ::: "sleep 5 && echo c5" "sleep 4 && echo c4" \
"sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1"
# Or shorter:
parallel -j0 "sleep {} && echo c{}" ::: 5 4 3 2 1
4$ paral -n=1 "sleep 5 && echo c5" "sleep 4 && echo c4" \
"sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1"
4$ parallel -j1 "sleep {} && echo c{}" ::: 5 4 3 2 1
5$ paral -n=2 "sleep 5 && echo c5" "sleep 4 && echo c4" \
"sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1"
5$ parallel -j2 "sleep {} && echo c{}" ::: 5 4 3 2 1
6$ paral -n=5 "sleep 5 && echo c5" "sleep 4 && echo c4" \
"sleep 3 && echo c3" "sleep 2 && echo c2" "sleep 1 && echo c1"
6$ parallel -j5 "sleep {} && echo c{}" ::: 5 4 3 2 1
7$ paral -n=1 "echo a && sleep 0.5 && echo b && sleep 0.5 && \
echo c && sleep 0.5 && echo d && sleep 0.5 && \
echo e && sleep 0.5 && echo f && sleep 0.5 && \
echo g && sleep 0.5 && echo h"
7$ parallel ::: "echo a && sleep 0.5 && echo b && sleep 0.5 && \
echo c && sleep 0.5 && echo d && sleep 0.5 && \
echo e && sleep 0.5 && echo f && sleep 0.5 && \
echo g && sleep 0.5 && echo h"
@end verbatim
https://github.com/amattn/paral
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN concurr AND GNU Parallel
@section DIFFERENCES BETWEEN concurr AND GNU Parallel
@strong{concurr} is built to run jobs in parallel using a client/server
model.
@menu
* EXAMPLES FROM README.md::
@end menu
@node EXAMPLES FROM README.md
@subsection EXAMPLES FROM README.md
The examples from @strong{README.md}:
@verbatim
1$ concurr 'echo job {#} on slot {%}: {}' : arg1 arg2 arg3 arg4
1$ parallel 'echo job {#} on slot {%}: {}' ::: arg1 arg2 arg3 arg4
2$ concurr 'echo job {#} on slot {%}: {}' :: file1 file2 file3
2$ parallel 'echo job {#} on slot {%}: {}' :::: file1 file2 file3
3$ concurr 'echo {}' < input_file
3$ parallel 'echo {}' < input_file
4$ cat file | concurr 'echo {}'
4$ cat file | parallel 'echo {}'
@end verbatim
@strong{concurr} deals badly empty input files and with output larger than
64 KB.
https://github.com/mmstick/concurr
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN lesser-parallel AND GNU Parallel
@section DIFFERENCES BETWEEN lesser-parallel AND GNU Parallel
@strong{lesser-parallel} is the inspiration for @strong{parallel --embed}. Both
@strong{lesser-parallel} and @strong{parallel --embed} define bash functions that
can be included as part of a bash script to run jobs in parallel.
@strong{lesser-parallel} implements a few of the replacement strings, but
hardly any options, whereas @strong{parallel --embed} gives you the full
GNU @strong{parallel} experience.
https://github.com/kou1okada/lesser-parallel
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN npm-parallel AND GNU Parallel
@section DIFFERENCES BETWEEN npm-parallel AND GNU Parallel
@strong{npm-parallel} can run npm tasks in parallel.
There are no examples and very little documentation, so it is hard to
compare to GNU @strong{parallel}.
https://github.com/spion/npm-parallel
(Last checked: 2019-01)
@node DIFFERENCES BETWEEN machma AND GNU Parallel
@section DIFFERENCES BETWEEN machma AND GNU Parallel
@strong{machma} runs tasks in parallel. It gives time stamped
output. It buffers in RAM.
@menu
* EXAMPLES FROM README.md 1::
@end menu
@node EXAMPLES FROM README.md 1
@subsection EXAMPLES FROM README.md
The examples from README.md:
@verbatim
1$ # Put shorthand for timestamp in config for the examples
echo '--rpl '\
\''{time} $_=::strftime("%Y-%m-%d %H:%M:%S",localtime())'\' \
> ~/.parallel/machma
echo '--line-buffer --tagstring "{#} {time} {}"' \
>> ~/.parallel/machma
2$ find . -iname '*.jpg' |
machma -- mogrify -resize 1200x1200 -filter Lanczos {}
find . -iname '*.jpg' |
parallel --bar -Jmachma mogrify -resize 1200x1200 \
-filter Lanczos {}
3$ cat /tmp/ips | machma -p 2 -- ping -c 2 -q {}
3$ cat /tmp/ips | parallel -j2 -Jmachma ping -c 2 -q {}
4$ cat /tmp/ips |
machma -- sh -c 'ping -c 2 -q $0 > /dev/null && echo alive' {}
4$ cat /tmp/ips |
parallel -Jmachma 'ping -c 2 -q {} > /dev/null && echo alive'
5$ find . -iname '*.jpg' |
machma --timeout 5s -- mogrify -resize 1200x1200 \
-filter Lanczos {}
5$ find . -iname '*.jpg' |
parallel --timeout 5s --bar mogrify -resize 1200x1200 \
-filter Lanczos {}
6$ find . -iname '*.jpg' -print0 |
machma --null -- mogrify -resize 1200x1200 -filter Lanczos {}
6$ find . -iname '*.jpg' -print0 |
parallel --null --bar mogrify -resize 1200x1200 \
-filter Lanczos {}
@end verbatim
https://github.com/fd0/machma
(Last checked: 2019-06)
@node DIFFERENCES BETWEEN interlace AND GNU Parallel
@section DIFFERENCES BETWEEN interlace AND GNU Parallel
Summary (see legend above):
@table @asis
@item - I2 I3 I4 - - -
@anchor{- I2 I3 I4 - - -}
@item M1 - M3 - - M6
@anchor{M1 - M3 - - M6 2}
@item - O2 O3 - - - - x x
@anchor{- O2 O3 - - - - x x}
@item E1 E2 - - - - -
@anchor{E1 E2 - - - - -}
@item - - - - - - - - -
@anchor{- - - - - - - - - 4}
@item - -
@anchor{- - 5}
@end table
@strong{interlace} is built for network analysis to run network tools in parallel.
@strong{interface} does not buffer output, so output from different jobs mixes.
The overhead for each target is O(n*n), so with 1000 targets it
becomes very slow with an overhead in the order of 500ms/target.
@menu
* EXAMPLES FROM interlace's WEBSITE::
@end menu
@node EXAMPLES FROM interlace's WEBSITE
@subsection EXAMPLES FROM interlace's WEBSITE
Using @strong{prips} most of the examples from
https://github.com/codingo/Interlace can be run with GNU @strong{parallel}:
Blocker
@verbatim
commands.txt:
mkdir -p _output_/_target_/scans/
_blocker_
nmap _target_ -oA _output_/_target_/scans/_target_-nmap
interlace -tL ./targets.txt -cL commands.txt -o $output
parallel -a targets.txt \
mkdir -p $output/{}/scans/\; nmap {} -oA $output/{}/scans/{}-nmap
@end verbatim
Blocks
@verbatim
commands.txt:
_block:nmap_
mkdir -p _target_/output/scans/
nmap _target_ -oN _target_/output/scans/_target_-nmap
_block:nmap_
nikto --host _target_
interlace -tL ./targets.txt -cL commands.txt
_nmap() {
mkdir -p $1/output/scans/
nmap $1 -oN $1/output/scans/$1-nmap
}
export -f _nmap
parallel ::: _nmap "nikto --host" :::: targets.txt
@end verbatim
Run Nikto Over Multiple Sites
@verbatim
interlace -tL ./targets.txt -threads 5 \
-c "nikto --host _target_ > ./_target_-nikto.txt" -v
parallel -a targets.txt -P5 nikto --host {} \> ./{}_-nikto.txt
@end verbatim
Run Nikto Over Multiple Sites and Ports
@verbatim
interlace -tL ./targets.txt -threads 5 -c \
"nikto --host _target_:_port_ > ./_target_-_port_-nikto.txt" \
-p 80,443 -v
parallel -P5 nikto --host {1}:{2} \> ./{1}-{2}-nikto.txt \
:::: targets.txt ::: 80 443
@end verbatim
Run a List of Commands against Target Hosts
@verbatim
commands.txt:
nikto --host _target_:_port_ > _output_/_target_-nikto.txt
sslscan _target_:_port_ > _output_/_target_-sslscan.txt
testssl.sh _target_:_port_ > _output_/_target_-testssl.txt
interlace -t example.com -o ~/Engagements/example/ \
-cL ./commands.txt -p 80,443
parallel --results ~/Engagements/example/{2}:{3}{1} {1} {2}:{3} \
::: "nikto --host" sslscan testssl.sh ::: example.com ::: 80 443
@end verbatim
CIDR notation with an application that doesn't support it
@verbatim
interlace -t 192.168.12.0/24 -c "vhostscan _target_ \
-oN _output_/_target_-vhosts.txt" -o ~/scans/ -threads 50
prips 192.168.12.0/24 |
parallel -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt
@end verbatim
Glob notation with an application that doesn't support it
@verbatim
interlace -t 192.168.12.* -c "vhostscan _target_ \
-oN _output_/_target_-vhosts.txt" -o ~/scans/ -threads 50
# Glob is not supported in prips
prips 192.168.12.0/24 |
parallel -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt
@end verbatim
Dash (-) notation with an application that doesn't support it
@verbatim
interlace -t 192.168.12.1-15 -c \
"vhostscan _target_ -oN _output_/_target_-vhosts.txt" \
-o ~/scans/ -threads 50
# Dash notation is not supported in prips
prips 192.168.12.1 192.168.12.15 |
parallel -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt
@end verbatim
Threading Support for an application that doesn't support it
@verbatim
interlace -tL ./target-list.txt -c \
"vhostscan -t _target_ -oN _output_/_target_-vhosts.txt" \
-o ~/scans/ -threads 50
cat ./target-list.txt |
parallel -P50 vhostscan -t {} -oN ~/scans/{}-vhosts.txt
@end verbatim
alternatively
@verbatim
./vhosts-commands.txt:
vhostscan -t $target -oN _output_/_target_-vhosts.txt
interlace -cL ./vhosts-commands.txt -tL ./target-list.txt \
-threads 50 -o ~/scans
./vhosts-commands.txt:
vhostscan -t "$1" -oN "$2"
parallel -P50 ./vhosts-commands.txt {} ~/scans/{}-vhosts.txt \
:::: ./target-list.txt
@end verbatim
Exclusions
@verbatim
interlace -t 192.168.12.0/24 -e 192.168.12.0/26 -c \
"vhostscan _target_ -oN _output_/_target_-vhosts.txt" \
-o ~/scans/ -threads 50
prips 192.168.12.0/24 | grep -xv -Ff <(prips 192.168.12.0/26) |
parallel -P50 vhostscan {} -oN ~/scans/{}-vhosts.txt
@end verbatim
Run Nikto Using Multiple Proxies
@verbatim
interlace -tL ./targets.txt -pL ./proxies.txt -threads 5 -c \
"nikto --host _target_:_port_ -useproxy _proxy_ > \
./_target_-_port_-nikto.txt" -p 80,443 -v
parallel -j5 \
"nikto --host {1}:{2} -useproxy {3} > ./{1}-{2}-nikto.txt" \
:::: ./targets.txt ::: 80 443 :::: ./proxies.txt
@end verbatim
https://github.com/codingo/Interlace
(Last checked: 2019-09)
@node DIFFERENCES BETWEEN otonvm Parallel AND GNU Parallel
@section DIFFERENCES BETWEEN otonvm Parallel AND GNU Parallel
I have been unable to get the code to run at all. It seems unfinished.
https://github.com/otonvm/Parallel
(Last checked: 2019-02)
@node DIFFERENCES BETWEEN k-bx par AND GNU Parallel
@section DIFFERENCES BETWEEN k-bx par AND GNU Parallel
@strong{par} requires Haskell to work. This limits the number of platforms
this can work on.
@strong{par} does line buffering in memory. The memory usage is 3x the
longest line (compared to 1x for @strong{parallel --lb}). Commands must be
given as arguments. There is no template.
These are the examples from https://github.com/k-bx/par with the
corresponding GNU @strong{parallel} command.
@verbatim
par "echo foo; sleep 1; echo foo; sleep 1; echo foo" \
"echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success"
parallel --lb ::: "echo foo; sleep 1; echo foo; sleep 1; echo foo" \
"echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success"
par "echo foo; sleep 1; foofoo" \
"echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success"
parallel --lb --halt 1 ::: "echo foo; sleep 1; foofoo" \
"echo bar; sleep 1; echo bar; sleep 1; echo bar" && echo "success"
par "PARPREFIX=[fooechoer] echo foo" "PARPREFIX=[bar] echo bar"
parallel --lb --colsep , --tagstring {1} {2} \
::: "[fooechoer],echo foo" "[bar],echo bar"
par --succeed "foo" "bar" && echo 'wow'
parallel "foo" "bar"; true && echo 'wow'
@end verbatim
https://github.com/k-bx/par
(Last checked: 2019-02)
@node DIFFERENCES BETWEEN parallelshell AND GNU Parallel
@section DIFFERENCES BETWEEN parallelshell AND GNU Parallel
@strong{parallelshell} does not allow for composed commands:
@verbatim
# This does not work
parallelshell 'echo foo;echo bar' 'echo baz;echo quuz'
@end verbatim
Instead you have to wrap that in a shell:
@verbatim
parallelshell 'sh -c "echo foo;echo bar"' 'sh -c "echo baz;echo quuz"'
@end verbatim
It buffers output in RAM. All commands must be given on the command
line and all commands are started in parallel at the same time. This
will cause the system to freeze if there are so many jobs that there
is not enough memory to run them all at the same time.
https://github.com/keithamus/parallelshell
(Last checked: 2019-02)
https://github.com/darkguy2008/parallelshell
(Last checked: 2019-03)
@node DIFFERENCES BETWEEN shell-executor AND GNU Parallel
@section DIFFERENCES BETWEEN shell-executor AND GNU Parallel
@strong{shell-executor} does not allow for composed commands:
@verbatim
# This does not work
sx 'echo foo;echo bar' 'echo baz;echo quuz'
@end verbatim
Instead you have to wrap that in a shell:
@verbatim
sx 'sh -c "echo foo;echo bar"' 'sh -c "echo baz;echo quuz"'
@end verbatim
It buffers output in RAM. All commands must be given on the command
line and all commands are started in parallel at the same time. This
will cause the system to freeze if there are so many jobs that there
is not enough memory to run them all at the same time.
https://github.com/royriojas/shell-executor
(Last checked: 2019-02)
@node DIFFERENCES BETWEEN non-GNU par AND GNU Parallel
@section DIFFERENCES BETWEEN non-GNU par AND GNU Parallel
@strong{par} buffers in memory to avoid mixing of jobs. It takes 1s per 1
million output lines.
@strong{par} needs to have all commands before starting the first job. The
jobs are read from stdin (standard input) so any quoting will have to
be done by the user.
Stdout (standard output) is prepended with o:. Stderr (standard error)
is sendt to stdout (standard output) and prepended with e:.
For short jobs with little output @strong{par} is 20% faster than GNU
@strong{parallel} and 60% slower than @strong{xargs}.
https://github.com/UnixJunkie/PAR
https://savannah.nongnu.org/projects/par
(Last checked: 2019-02)
@node DIFFERENCES BETWEEN fd AND GNU Parallel
@section DIFFERENCES BETWEEN fd AND GNU Parallel
@strong{fd} does not support composed commands, so commands must be wrapped
in @strong{sh -c}.
It buffers output in RAM.
It only takes file names from the filesystem as input (similar to @strong{find}).
https://github.com/sharkdp/fd
(Last checked: 2019-02)
@node DIFFERENCES BETWEEN lateral AND GNU Parallel
@section DIFFERENCES BETWEEN lateral AND GNU Parallel
@strong{lateral} is very similar to @strong{sem}: It takes a single command and
runs it in the background. The design means that output from parallel
running jobs may mix. If it dies unexpectly it leaves a socket in
~/.lateral/socket.PID.
@strong{lateral} deals badly with too long command lines. This makes the
@strong{lateral} server crash:
@verbatim
lateral run echo `seq 100000| head -c 1000k`
@end verbatim
Any options will be read by @strong{lateral} so this does not work
(@strong{lateral} interprets the @strong{-l}):
@verbatim
lateral run ls -l
@end verbatim
Composed commands do not work:
@verbatim
lateral run pwd ';' ls
@end verbatim
Functions do not work:
@verbatim
myfunc() { echo a; }
export -f myfunc
lateral run myfunc
@end verbatim
Running @strong{emacs} in the terminal causes the parent shell to die:
@verbatim
echo '#!/bin/bash' > mycmd
echo emacs -nw >> mycmd
chmod +x mycmd
lateral start
lateral run ./mycmd
@end verbatim
Here are the examples from https://github.com/akramer/lateral with the
corresponding GNU @strong{sem} and GNU @strong{parallel} commands:
@verbatim
1$ lateral start
for i in $(cat /tmp/names); do
lateral run -- some_command $i
done
lateral wait
1$ for i in $(cat /tmp/names); do
sem some_command $i
done
sem --wait
1$ parallel some_command :::: /tmp/names
2$ lateral start
for i in $(seq 1 100); do
lateral run -- my_slow_command < workfile$i > /tmp/logfile$i
done
lateral wait
2$ for i in $(seq 1 100); do
sem my_slow_command < workfile$i > /tmp/logfile$i
done
sem --wait
2$ parallel 'my_slow_command < workfile{} > /tmp/logfile{}' \
::: {1..100}
3$ lateral start -p 0 # yup, it will just queue tasks
for i in $(seq 1 100); do
lateral run -- command_still_outputs_but_wont_spam inputfile$i
done
# command output spam can commence
lateral config -p 10; lateral wait
3$ for i in $(seq 1 100); do
echo "command inputfile$i" >> joblist
done
parallel -j 10 :::: joblist
3$ echo 1 > /tmp/njobs
parallel -j /tmp/njobs command inputfile{} \
::: {1..100} &
echo 10 >/tmp/njobs
wait
@end verbatim
https://github.com/akramer/lateral
(Last checked: 2019-03)
@node DIFFERENCES BETWEEN with-this AND GNU Parallel
@section DIFFERENCES BETWEEN with-this AND GNU Parallel
The examples from https://github.com/amritb/with-this.git and the
corresponding GNU @strong{parallel} command:
@verbatim
with -v "$(cat myurls.txt)" "curl -L this"
parallel curl -L ::: myurls.txt
with -v "$(cat myregions.txt)" \
"aws --region=this ec2 describe-instance-status"
parallel aws --region={} ec2 describe-instance-status \
:::: myregions.txt
with -v "$(ls)" "kubectl --kubeconfig=this get pods"
ls | parallel kubectl --kubeconfig={} get pods
with -v "$(ls | grep config)" "kubectl --kubeconfig=this get pods"
ls | grep config | parallel kubectl --kubeconfig={} get pods
with -v "$(echo {1..10})" "echo 123"
parallel -N0 echo 123 ::: {1..10}
@end verbatim
Stderr is merged with stdout. @strong{with-this} buffers in RAM. It uses 3x
the output size, so you cannot have output larger than 1/3rd the
amount of RAM. The input values cannot contain spaces. Composed
commands do not work.
@strong{with-this} gives some additional information, so the output has to
be cleaned before piping it to the next command.
https://github.com/amritb/with-this.git
(Last checked: 2019-03)
@node DIFFERENCES BETWEEN Tollef's parallel (moreutils) AND GNU Parallel
@section DIFFERENCES BETWEEN Tollef's parallel (moreutils) AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - I4 - - I7
@anchor{- - - I4 - - I7}
@item - - M3 - - M6
@anchor{- - M3 - - M6}
@item - O2 O3 - O5 O6 - x x
@anchor{- O2 O3 - O5 O6 - x x}
@item E1 - - - - - E7
@anchor{E1 - - - - - E7}
@item - x x x x x x x x
@anchor{- x x x x x x x x}
@item - -
@anchor{- - 6}
@end table
@menu
* EXAMPLES FROM Tollef's parallel MANUAL::
@end menu
@node EXAMPLES FROM Tollef's parallel MANUAL
@subsection EXAMPLES FROM Tollef's parallel MANUAL
@strong{Tollef} parallel sh -c "echo hi; sleep 2; echo bye" -- 1 2 3
@strong{GNU} parallel "echo hi; sleep 2; echo bye" ::: 1 2 3
@strong{Tollef} parallel -j 3 ufraw -o processed -- *.NEF
@strong{GNU} parallel -j 3 ufraw -o processed ::: *.NEF
@strong{Tollef} parallel -j 3 -- ls df "echo hi"
@strong{GNU} parallel -j 3 ::: ls df "echo hi"
(Last checked: 2019-08)
@node DIFFERENCES BETWEEN rargs AND GNU Parallel
@section DIFFERENCES BETWEEN rargs AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - - - - I7
@anchor{I1 - - - - - I7 1}
@item - - M3 M4 - -
@anchor{- - M3 M4 - -}
@item - O2 O3 - O5 O6 - O8 -
@anchor{- O2 O3 - O5 O6 - O8 -}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - -}
@item - - - - - - - - -
@anchor{- - - - - - - - - 5}
@item - -
@anchor{- - 7}
@end table
@strong{rargs} has elegant ways of doing named regexp capture and field ranges.
With GNU @strong{parallel} you can use @strong{--rpl} to get a similar
functionality as regexp capture gives, and use @strong{join} and @strong{@@arg} to
get the field ranges. But the syntax is longer. This:
@verbatim
--rpl '{r(\d+)\.\.(\d+)} $_=join"$opt::colsep",@arg[$$1..$$2]'
@end verbatim
would make it possible to use:
@verbatim
{1r3..6}
@end verbatim
for field 3..6.
For full support of @{n..m:s@} including negative numbers use a dynamic
replacement string like this:
@verbatim
PARALLEL=--rpl\ \''{r((-?\d+)?)\.\.((-?\d+)?)((:([^}]*))?)}
$a = defined $$2 ? $$2 < 0 ? 1+$#arg+$$2 : $$2 : 1;
$b = defined $$4 ? $$4 < 0 ? 1+$#arg+$$4 : $$4 : $#arg+1;
$s = defined $$6 ? $$7 : " ";
$_ = join $s,@arg[$a..$b]'\'
export PARALLEL
@end verbatim
You can then do:
@verbatim
head /etc/passwd | parallel --colsep : echo ..={1r..} ..3={1r..3} \
4..={1r4..} 2..4={1r2..4} 3..3={1r3..3} ..3:-={1r..3:-} \
..3:/={1r..3:/} -1={-1} -5={-5} -6={-6} -3..={1r-3..}
@end verbatim
@menu
* EXAMPLES FROM rargs MANUAL::
@end menu
@node EXAMPLES FROM rargs MANUAL
@subsection EXAMPLES FROM rargs MANUAL
@verbatim
1$ ls *.bak | rargs -p '(.*)\.bak' mv {0} {1}
1$ ls *.bak | parallel mv {} {.}
2$ cat download-list.csv |
rargs -p '(?P<url>.*),(?P<filename>.*)' wget {url} -O {filename}
2$ cat download-list.csv |
parallel --csv wget {1} -O {2}
# or use regexps:
2$ cat download-list.csv |
parallel --rpl '{url} s/,.*//' --rpl '{filename} s/.*?,//' \
wget {url} -O {filename}
3$ cat /etc/passwd |
rargs -d: echo -e 'id: "{1}"\t name: "{5}"\t rest: "{6..::}"'
3$ cat /etc/passwd |
parallel -q --colsep : \
echo -e 'id: "{1}"\t name: "{5}"\t rest: "{=6 $_=join":",@arg[6..$#arg]=}"'
@end verbatim
https://github.com/lotabout/rargs
(Last checked: 2020-01)
@node DIFFERENCES BETWEEN threader AND GNU Parallel
@section DIFFERENCES BETWEEN threader AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - - - - -
@anchor{I1 - - - - - -}
@item M1 - M3 - - M6
@anchor{M1 - M3 - - M6 3}
@item O1 - O3 - O5 - - x x
@anchor{O1 - O3 - O5 - - x x}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 1}
@item - - - - - - - - -
@anchor{- - - - - - - - - 6}
@item - -
@anchor{- - 8}
@end table
Newline separates arguments, but newline at the end of file is treated
as an empty argument. So this runs 2 jobs:
@verbatim
echo two_jobs | threader -run 'echo "$THREADID"'
@end verbatim
@strong{threader} ignores stderr, so any output to stderr is
lost. @strong{threader} buffers in RAM, so output bigger than the machine's
virtual memory will cause the machine to crash.
https://github.com/voodooEntity/threader
(Last checked: 2020-04)
@node DIFFERENCES BETWEEN runp AND GNU Parallel
@section DIFFERENCES BETWEEN runp AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - - - - -
@anchor{I1 I2 - - - - - 1}
@item M1 - (M3) - - M6
@anchor{M1 - (M3) - - M6}
@item O1 O2 O3 - O5 O6 - x x -
@anchor{O1 O2 O3 - O5 O6 - x x -}
@item E1 - - - - - -
@anchor{E1 - - - - - - 2}
@item - - - - - - - - -
@anchor{- - - - - - - - - 7}
@item - -
@anchor{- - 9}
@end table
(M3): You can add a prefix and a postfix to the input, so it means you can
only insert the argument on the command line once.
@strong{runp} runs 10 jobs in parallel by default. @strong{runp} blocks if output
of a command is > 64 Kbytes. Quoting of input is needed. It adds
output to stderr (this can be prevented with -q)
@menu
* Examples as GNU Parallel::
@end menu
@node Examples as GNU Parallel
@subsection Examples as GNU Parallel
@verbatim
base='https://images-api.nasa.gov/search'
query='jupiter'
desc='planet'
type='image'
url="$base?q=$query&description=$desc&media_type=$type"
# Download the images in parallel using runp
curl -s $url | jq -r .collection.items[].href | \
runp -p 'curl -s' | jq -r .[] | grep large | \
runp -p 'curl -s -L -O'
time curl -s $url | jq -r .collection.items[].href | \
runp -g 1 -q -p 'curl -s' | jq -r .[] | grep large | \
runp -g 1 -q -p 'curl -s -L -O'
# Download the images in parallel
curl -s $url | jq -r .collection.items[].href | \
parallel curl -s | jq -r .[] | grep large | \
parallel curl -s -L -O
time curl -s $url | jq -r .collection.items[].href | \
parallel -j 1 curl -s | jq -r .[] | grep large | \
parallel -j 1 curl -s -L -O
@end verbatim
@menu
* Run some test commands (read from file)::
* Ping several hosts and see packet loss (read from stdin)::
* Get directories' sizes (read from stdin)::
* Compress files::
* Measure HTTP request + response time::
* Find open TCP ports::
@end menu
@node Run some test commands (read from file)
@subsubsection Run some test commands (read from file)
@verbatim
# Create a file containing commands to run in parallel.
cat << EOF > /tmp/test-commands.txt
sleep 5
sleep 3
blah # this will fail
ls $PWD # PWD shell variable is used here
EOF
# Run commands from the file.
runp /tmp/test-commands.txt > /dev/null
parallel -a /tmp/test-commands.txt > /dev/null
@end verbatim
@node Ping several hosts and see packet loss (read from stdin)
@subsubsection Ping several hosts and see packet loss (read from stdin)
@verbatim
# First copy this line and press Enter
runp -p 'ping -c 5 -W 2' -s '| grep loss'
localhost
1.1.1.1
8.8.8.8
# Press Enter and Ctrl-D when done entering the hosts
# First copy this line and press Enter
parallel ping -c 5 -W 2 {} '| grep loss'
localhost
1.1.1.1
8.8.8.8
# Press Enter and Ctrl-D when done entering the hosts
@end verbatim
@node Get directories' sizes (read from stdin)
@subsubsection Get directories' sizes (read from stdin)
@verbatim
echo -e "$HOME\n/etc\n/tmp" | runp -q -p 'sudo du -sh'
echo -e "$HOME\n/etc\n/tmp" | parallel sudo du -sh
# or:
parallel sudo du -sh ::: "$HOME" /etc /tmp
@end verbatim
@node Compress files
@subsubsection Compress files
@verbatim
find . -iname '*.txt' | runp -p 'gzip --best'
find . -iname '*.txt' | parallel gzip --best
@end verbatim
@node Measure HTTP request + response time
@subsubsection Measure HTTP request + response time
@verbatim
export CURL="curl -w 'time_total: %{time_total}\n'"
CURL="$CURL -o /dev/null -s https://golang.org/"
perl -wE 'for (1..10) { say $ENV{CURL} }' |
runp -q # Make 10 requests
perl -wE 'for (1..10) { say $ENV{CURL} }' | parallel
# or:
parallel -N0 "$CURL" ::: {1..10}
@end verbatim
@node Find open TCP ports
@subsubsection Find open TCP ports
@verbatim
cat << EOF > /tmp/host-port.txt
localhost 22
localhost 80
localhost 81
127.0.0.1 443
127.0.0.1 444
scanme.nmap.org 22
scanme.nmap.org 23
scanme.nmap.org 443
EOF
1$ cat /tmp/host-port.txt |
runp -q -p 'netcat -v -w2 -z' 2>&1 | egrep '(succeeded!|open)$'
# --colsep is needed to split the line
1$ cat /tmp/host-port.txt |
parallel --colsep ' ' netcat -v -w2 -z 2>&1 |
egrep '(succeeded!|open)$'
# or use uq for unquoted:
1$ cat /tmp/host-port.txt |
parallel netcat -v -w2 -z {=uq=} 2>&1 |
egrep '(succeeded!|open)$'
@end verbatim
https://github.com/jreisinger/runp
(Last checked: 2020-04)
@node DIFFERENCES BETWEEN papply AND GNU Parallel
@section DIFFERENCES BETWEEN papply AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - I4 - - -
@anchor{- - - I4 - - -}
@item M1 - M3 - - M6
@anchor{M1 - M3 - - M6 4}
@item - - O3 - O5 - - x x O10
@anchor{- - O3 - O5 - - x x O10}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 2}
@item - - - - - - - - -
@anchor{- - - - - - - - - 8}
@item - -
@anchor{- - 10}
@end table
@strong{papply} does not print the output if the command fails:
@verbatim
$ papply 'echo %F; false' foo
"echo foo; false" did not succeed
@end verbatim
@strong{papply}'s replacement strings (%F %d %f %n %e %z) can be simulated in GNU
@strong{parallel} by putting this in @strong{~/.parallel/config}:
@verbatim
--rpl '%F'
--rpl '%d $_=Q(::dirname($_));'
--rpl '%f s:.*/::;'
--rpl '%n s:.*/::;s:\.[^/.]+$::;'
--rpl '%e s:.*\.:.:'
--rpl '%z $_=""'
@end verbatim
@strong{papply} buffers in RAM, and uses twice the amount of output. So
output of 5 GB takes 10 GB RAM.
The buffering is very CPU intensive: Buffering a line of 5 GB takes 40
seconds (compared to 10 seconds with GNU @strong{parallel}).
@menu
* Examples as GNU Parallel 1::
@end menu
@node Examples as GNU Parallel 1
@subsection Examples as GNU Parallel
@verbatim
1$ papply gzip *.txt
1$ parallel gzip ::: *.txt
2$ papply "convert %F %n.jpg" *.png
2$ parallel convert {} {.}.jpg ::: *.png
@end verbatim
https://pypi.org/project/papply/
(Last checked: 2020-04)
@node DIFFERENCES BETWEEN async AND GNU Parallel
@section DIFFERENCES BETWEEN async AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - I4 - - I7
@anchor{- - - I4 - - I7 1}
@item - - - - - M6
@anchor{- - - - - M6}
@item - O2 O3 - O5 O6 - x x O10
@anchor{- O2 O3 - O5 O6 - x x O10}
@item E1 - - E4 - E6 -
@anchor{E1 - - E4 - E6 - 1}
@item - - - - - - - - -
@anchor{- - - - - - - - - 9}
@item S1 S2
@anchor{S1 S2 1}
@end table
@strong{async} is very similary to GNU @strong{parallel}'s @strong{--semaphore} mode
(aka @strong{sem}). @strong{async} requires the user to start a server process.
The input is quoted like @strong{-q} so you need @strong{bash -c "...;..."} to run
composed commands.
@menu
* Examples as GNU Parallel 2::
@end menu
@node Examples as GNU Parallel 2
@subsection Examples as GNU Parallel
@verbatim
1$ S="/tmp/example_socket"
1$ ID=myid
2$ async -s="$S" server --start
2$ # GNU Parallel does not need a server to run
3$ for i in {1..20}; do
# prints command output to stdout
async -s="$S" cmd -- bash -c "sleep 1 && echo test $i"
done
3$ for i in {1..20}; do
# prints command output to stdout
sem --id "$ID" -j100% "sleep 1 && echo test $i"
# GNU Parallel will only print job when it is done
# If you need output from different jobs to mix
# use -u or --line-buffer
sem --id "$ID" -j100% --line-buffer "sleep 1 && echo test $i"
done
4$ # wait until all commands are finished
async -s="$S" wait
4$ sem --id "$ID" --wait
5$ # configure the server to run four commands in parallel
async -s="$S" server -j4
5$ export PARALLEL=-j4
6$ mkdir "/tmp/ex_dir"
for i in {21..40}; do
# redirects command output to /tmp/ex_dir/file*
async -s="$S" cmd -o "/tmp/ex_dir/file$i" -- \
bash -c "sleep 1 && echo test $i"
done
6$ mkdir "/tmp/ex_dir"
for i in {21..40}; do
# redirects command output to /tmp/ex_dir/file*
sem --id "$ID" --result '/tmp/my-ex/file-{=$_=""=}'"$i" \
"sleep 1 && echo test $i"
done
7$ sem --id "$ID" --wait
7$ async -s="$S" wait
8$ # stops server
async -s="$S" server --stop
8$ # GNU Parallel does not need to stop a server
@end verbatim
https://github.com/ctbur/async/
(Last checked: 2023-01)
@node DIFFERENCES BETWEEN pardi AND GNU Parallel
@section DIFFERENCES BETWEEN pardi AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - - - - I7
@anchor{I1 I2 - - - - I7 1}
@item M1 - - - - M6
@anchor{M1 - - - - M6}
@item O1 O2 O3 O4 O5 - O7 - - O10
@anchor{O1 O2 O3 O4 O5 - O7 - - O10}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 3}
@item - - - - - - - - -
@anchor{- - - - - - - - - 10}
@item - -
@anchor{- - 11}
@end table
@strong{pardi} is very similar to @strong{parallel --pipe --cat}: It reads blocks
of data and not arguments. So it cannot insert an argument in the
command line. It puts the block into a temporary file, and this file
name (%IN) can be put in the command line. You can only use %IN once.
It can also run full command lines in parallel (like: @strong{cat file |
parallel}).
@menu
* EXAMPLES FROM pardi test.sh::
@end menu
@node EXAMPLES FROM pardi test.sh
@subsection EXAMPLES FROM pardi test.sh
@verbatim
1$ time pardi -v -c 100 -i data/decoys.smi -ie .smi -oe .smi \
-o data/decoys_std_pardi.smi \
-w '(standardiser -i %IN -o %OUT 2>&1) > /dev/null'
1$ cat data/decoys.smi |
time parallel -N 100 --pipe --cat \
'(standardiser -i {} -o {#} 2>&1) > /dev/null; cat {#}; rm {#}' \
> data/decoys_std_pardi.smi
2$ pardi -n 1 -i data/test_in.types -o data/test_out.types \
-d 'r:^#atoms:' -w 'cat %IN > %OUT'
2$ cat data/test_in.types |
parallel -n 1 -k --pipe --cat --regexp --recstart '^#atoms' \
'cat {}' > data/test_out.types
3$ pardi -c 6 -i data/test_in.types -o data/test_out.types \
-d 'r:^#atoms:' -w 'cat %IN > %OUT'
3$ cat data/test_in.types |
parallel -n 6 -k --pipe --cat --regexp --recstart '^#atoms' \
'cat {}' > data/test_out.types
4$ pardi -i data/decoys.mol2 -o data/still_decoys.mol2 \
-d 's:@<TRIPOS>MOLECULE' -w 'cp %IN %OUT'
4$ cat data/decoys.mol2 |
parallel -n 1 --pipe --cat --recstart '@<TRIPOS>MOLECULE' \
'cp {} {#}; cat {#}; rm {#}' > data/still_decoys.mol2
5$ pardi -i data/decoys.mol2 -o data/decoys2.mol2 \
-d b:10000 -w 'cp %IN %OUT' --preserve
5$ cat data/decoys.mol2 |
parallel -k --pipe --block 10k --recend '' --cat \
'cat {} > {#}; cat {#}; rm {#}' > data/decoys2.mol2
@end verbatim
https://github.com/UnixJunkie/pardi
(Last checked: 2021-01)
@node DIFFERENCES BETWEEN bthread AND GNU Parallel
@section DIFFERENCES BETWEEN bthread AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - I4 - - -
@anchor{- - - I4 - - - 1}
@item - - - - - M6
@anchor{- - - - - M6 1}
@item O1 - O3 - - - O7 O8 - -
@anchor{O1 - O3 - - - O7 O8 - -}
@item E1 - - - - - -
@anchor{E1 - - - - - - 3}
@item - - - - - - - - -
@anchor{- - - - - - - - - 11}
@item - -
@anchor{- - 12}
@end table
@strong{bthread} takes around 1 sec per MB of output. The maximal output
line length is 1073741759.
You cannot quote space in the command, so you cannot run composed
commands like @strong{sh -c "echo a; echo b"}.
https://gitlab.com/netikras/bthread
(Last checked: 2021-01)
@node DIFFERENCES BETWEEN simple_gpu_scheduler AND GNU Parallel
@section DIFFERENCES BETWEEN simple_gpu_scheduler AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - - - - I7
@anchor{I1 - - - - - I7 2}
@item M1 - - - - M6
@anchor{M1 - - - - M6 1}
@item - O2 O3 - - O6 - x x O10
@anchor{- O2 O3 - - O6 - x x O10}
@item E1 - - - - - -
@anchor{E1 - - - - - - 4}
@item - - - - - - - - -
@anchor{- - - - - - - - - 12}
@item - -
@anchor{- - 13}
@end table
@menu
* EXAMPLES FROM simple_gpu_scheduler MANUAL::
@end menu
@node EXAMPLES FROM simple_gpu_scheduler MANUAL
@subsection EXAMPLES FROM simple_gpu_scheduler MANUAL
@verbatim
1$ simple_gpu_scheduler --gpus 0 1 2 < gpu_commands.txt
1$ parallel -j3 --shuf \
CUDA_VISIBLE_DEVICES='{=1 $_=slot()-1 =} {=uq;=}' \
< gpu_commands.txt
2$ simple_hypersearch \
"python3 train_dnn.py --lr {lr} --batch_size {bs}" \
-p lr 0.001 0.0005 0.0001 -p bs 32 64 128 |
simple_gpu_scheduler --gpus 0,1,2
2$ parallel --header : --shuf -j3 -v \
CUDA_VISIBLE_DEVICES='{=1 $_=slot()-1 =}' \
python3 train_dnn.py --lr {lr} --batch_size {bs} \
::: lr 0.001 0.0005 0.0001 ::: bs 32 64 128
3$ simple_hypersearch \
"python3 train_dnn.py --lr {lr} --batch_size {bs}" \
--n-samples 5 -p lr 0.001 0.0005 0.0001 -p bs 32 64 128 |
simple_gpu_scheduler --gpus 0,1,2
3$ parallel --header : --shuf \
CUDA_VISIBLE_DEVICES='{=1 $_=slot()-1; seq()>5 and skip() =}' \
python3 train_dnn.py --lr {lr} --batch_size {bs} \
::: lr 0.001 0.0005 0.0001 ::: bs 32 64 128
4$ touch gpu.queue
tail -f -n 0 gpu.queue | simple_gpu_scheduler --gpus 0,1,2 &
echo "my_command_with | and stuff > logfile" >> gpu.queue
4$ touch gpu.queue
tail -f -n 0 gpu.queue |
parallel -j3 CUDA_VISIBLE_DEVICES='{=1 $_=slot()-1 =} {=uq;=}' &
# Needed to fill job slots once
seq 3 | parallel echo true >> gpu.queue
# Add jobs
echo "my_command_with | and stuff > logfile" >> gpu.queue
# Needed to flush output from completed jobs
seq 3 | parallel echo true >> gpu.queue
@end verbatim
https://github.com/ExpectationMax/simple_gpu_scheduler
(Last checked: 2021-01)
@node DIFFERENCES BETWEEN parasweep AND GNU Parallel
@section DIFFERENCES BETWEEN parasweep AND GNU Parallel
@strong{parasweep} is a Python module for facilitating parallel parameter
sweeps.
A @strong{parasweep} job will normally take a text file as input. The text
file contains arguments for the job. Some of these arguments will be
fixed and some of them will be changed by @strong{parasweep}.
It does this by having a template file such as template.txt:
@verbatim
Xval: {x}
Yval: {y}
FixedValue: 9
# x with 2 decimals
DecimalX: {x:.2f}
TenX: ${x*10}
RandomVal: {r}
@end verbatim
and from this template it generates the file to be used by the job by
replacing the replacement strings.
Being a Python module @strong{parasweep} integrates tighter with Python than
GNU @strong{parallel}. You get the parameters directly in a Python data
structure. With GNU @strong{parallel} you can use the JSON or CSV output
format to get something similar, but you would have to read the
output.
@strong{parasweep} has a filtering method to ignore parameter combinations
you do not need.
Instead of calling the jobs directly, @strong{parasweep} can use Python's
Distributed Resource Management Application API to make jobs run with
different cluster software.
GNU @strong{parallel} @strong{--tmpl} supports templates with replacement
strings. Such as:
@verbatim
Xval: {x}
Yval: {y}
FixedValue: 9
# x with 2 decimals
DecimalX: {=x $_=sprintf("%.2f",$_) =}
TenX: {=x $_=$_*10 =}
RandomVal: {=1 $_=rand() =}
@end verbatim
that can be used like:
@verbatim
parallel --header : --tmpl my.tmpl={#}.t myprog {#}.t \
::: x 1 2 3 ::: y 1 2 3
@end verbatim
Filtering is supported as:
@verbatim
parallel --filter '{1} > {2}' echo ::: 1 2 3 ::: 1 2 3
@end verbatim
https://github.com/eviatarbach/parasweep
(Last checked: 2021-01)
@node DIFFERENCES BETWEEN parallel-bash AND GNU Parallel
@section DIFFERENCES BETWEEN parallel-bash AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - - - - -
@anchor{I1 I2 - - - - - 2}
@item - - M3 - - M6
@anchor{- - M3 - - M6 1}
@item - O2 O3 - O5 O6 - O8 x O10
@anchor{- O2 O3 - O5 O6 - O8 x O10}
@item E1 - - - - - -
@anchor{E1 - - - - - - 5}
@item - - - - - - - - -
@anchor{- - - - - - - - - 13}
@item - -
@anchor{- - 14}
@end table
@strong{parallel-bash} is written in pure bash. It is really fast (overhead
of ~0.05 ms/job compared to GNU @strong{parallel}'s 3-10 ms/job). So if your
jobs are extremely short lived, and you can live with the quite
limited command, this may be useful.
It works by making a queue for each process. Then the jobs are
distributed to the queues in a round robin fashion. Finally the queues
are started in parallel. This works fine, if you are lucky, but if
not, all the long jobs may end up in the same queue, so you may see:
@verbatim
$ printf "%b\n" 1 1 1 4 1 1 1 4 1 1 1 4 |
time parallel -P4 sleep {}
(7 seconds)
$ printf "%b\n" 1 1 1 4 1 1 1 4 1 1 1 4 |
time ./parallel-bash.bash -p 4 -c sleep {}
(12 seconds)
@end verbatim
Because it uses bash lists, the total number of jobs is limited to
167000..265000 depending on your environment. You get a segmentation
fault, when you reach the limit.
Ctrl-C does not stop spawning new jobs. Ctrl-Z does not suspend
running jobs.
@menu
* EXAMPLES FROM parallel-bash::
@end menu
@node EXAMPLES FROM parallel-bash
@subsection EXAMPLES FROM parallel-bash
@verbatim
1$ some_input | parallel-bash -p 5 -c echo
1$ some_input | parallel -j 5 echo
2$ parallel-bash -p 5 -c echo < some_file
2$ parallel -j 5 echo < some_file
3$ parallel-bash -p 5 -c echo <<< 'some string'
3$ parallel -j 5 -c echo <<< 'some string'
4$ something | parallel-bash -p 5 -c echo {} {}
4$ something | parallel -j 5 echo {} {}
@end verbatim
https://reposhub.com/python/command-line-tools/Akianonymus-parallel-bash.html
(Last checked: 2021-06)
@node DIFFERENCES BETWEEN bash-concurrent AND GNU Parallel
@section DIFFERENCES BETWEEN bash-concurrent AND GNU Parallel
@strong{bash-concurrent} is more an alternative to @strong{make} than to GNU
@strong{parallel}. Its input is very similar to a Makefile, where jobs
depend on other jobs.
It has a nice progress indicator where you can see which jobs
completed successfully, which jobs are currently running, which jobs
failed, and which jobs were skipped due to a depending job failed.
The indicator does not deal well with resizing the window.
Output is cached in tempfiles on disk, but is only shown if there is
an error, so it is not meant to be part of a UNIX pipeline. If
@strong{bash-concurrent} crashes these tempfiles are not removed.
It uses an O(n*n) algorithm, so if you have 1000 independent jobs it
takes 22 seconds to start it.
https://github.com/themattrix/bash-concurrent
(Last checked: 2021-02)
@node DIFFERENCES BETWEEN spawntool AND GNU Parallel
@section DIFFERENCES BETWEEN spawntool AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - - - - -
@anchor{I1 - - - - - - 1}
@item M1 - - - - M6
@anchor{M1 - - - - M6 2}
@item - O2 O3 - O5 O6 - x x O10
@anchor{- O2 O3 - O5 O6 - x x O10 1}
@item E1 - - - - - -
@anchor{E1 - - - - - - 6}
@item - - - - - - - - -
@anchor{- - - - - - - - - 14}
@item - -
@anchor{- - 15}
@end table
@strong{spawn} reads a full command line from stdin which it executes in
parallel.
http://code.google.com/p/spawntool/
(Last checked: 2021-07)
@node DIFFERENCES BETWEEN go-pssh AND GNU Parallel
@section DIFFERENCES BETWEEN go-pssh AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - - - - -
@anchor{- - - - - - - 2}
@item M1 - - - - -
@anchor{M1 - - - - -}
@item O1 - - - - - - x x O10
@anchor{O1 - - - - - - x x O10}
@item E1 - - - - - -
@anchor{E1 - - - - - - 7}
@item R1 R2 - - - R6 - - -
@anchor{R1 R2 - - - R6 - - -}
@item - -
@anchor{- - 16}
@end table
@strong{go-pssh} does @strong{ssh} in parallel to multiple machines. It runs the
same command on multiple machines similar to @strong{--nonall}.
The hostnames must be given as IP-addresses (not as hostnames).
Output is sent to stdout (standard output) if command is successful,
and to stderr (standard error) if the command fails.
@menu
* EXAMPLES FROM go-pssh::
@end menu
@node EXAMPLES FROM go-pssh
@subsection EXAMPLES FROM go-pssh
@verbatim
1$ go-pssh -l <ip>,<ip> -u <user> -p <port> -P <passwd> -c "<command>"
1$ parallel -S 'sshpass -p <passwd> ssh -p <port> <user>@<ip>' \
--nonall "<command>"
2$ go-pssh scp -f host.txt -u <user> -p <port> -P <password> \
-s /local/file_or_directory -d /remote/directory
2$ parallel --nonall --slf host.txt \
--basefile /local/file_or_directory/./ --wd /remote/directory
--ssh 'sshpass -p <password> ssh -p <port> -l <user>' true
3$ go-pssh scp -l <ip>,<ip> -u <user> -p <port> -P <password> \
-s /local/file_or_directory -d /remote/directory
3$ parallel --nonall -S <ip>,<ip> \
--basefile /local/file_or_directory/./ --wd /remote/directory
--ssh 'sshpass -p <password> ssh -p <port> -l <user>' true
@end verbatim
https://github.com/xuchenCN/go-pssh
(Last checked: 2021-07)
@node DIFFERENCES BETWEEN go-parallel AND GNU Parallel
@section DIFFERENCES BETWEEN go-parallel AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - - - - I7
@anchor{I1 I2 - - - - I7 2}
@item - - M3 - - M6
@anchor{- - M3 - - M6 2}
@item - O2 O3 - O5 - - x x - O10
@anchor{- O2 O3 - O5 - - x x - O10}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 4}
@item - - - - - - - - -
@anchor{- - - - - - - - - 15}
@item - -
@anchor{- - 17}
@end table
@strong{go-parallel} uses Go templates for replacement strings. Quite
similar to the @emph{@{= perl expr =@}} replacement string.
@menu
* EXAMPLES FROM go-parallel::
@end menu
@node EXAMPLES FROM go-parallel
@subsection EXAMPLES FROM go-parallel
@verbatim
1$ go-parallel -a ./files.txt -t 'cp {{.Input}} {{.Input | dirname | dirname}}'
1$ parallel -a ./files.txt cp {} '{= $_=::dirname(::dirname($_)) =}'
2$ go-parallel -a ./files.txt -t 'mkdir -p {{.Input}} {{noExt .Input}}'
2$ parallel -a ./files.txt echo mkdir -p {} {.}
3$ go-parallel -a ./files.txt -t 'mkdir -p {{.Input}} {{.Input | basename | noExt}}'
3$ parallel -a ./files.txt echo mkdir -p {} {/.}
@end verbatim
https://github.com/mylanconnolly/parallel
(Last checked: 2021-07)
@node DIFFERENCES BETWEEN p AND GNU Parallel
@section DIFFERENCES BETWEEN p AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - I4 - - x
@anchor{- - - I4 - - x}
@item - - - - - M6
@anchor{- - - - - M6 2}
@item - O2 O3 - O5 O6 - x x - O10
@anchor{- O2 O3 - O5 O6 - x x - O10}
@item E1 - - - - - -
@anchor{E1 - - - - - - 8}
@item - - - - - - - - -
@anchor{- - - - - - - - - 16}
@item - -
@anchor{- - 18}
@end table
@strong{p} is a tiny shell script. It can color output with some predefined
colors, but is otherwise quite limited.
It maxes out at around 116000 jobs (probably due to limitations in Bash).
@menu
* EXAMPLES FROM p::
@end menu
@node EXAMPLES FROM p
@subsection EXAMPLES FROM p
Some of the examples from @strong{p} cannot be implemented 100% by GNU
@strong{parallel}: The coloring is a bit different, and GNU @strong{parallel}
cannot have @strong{--tag} for some inputs and not for others.
The coloring done by GNU @strong{parallel} is not exactly the same as @strong{p}.
@verbatim
1$ p -bc blue "ping 127.0.0.1" -uc red "ping 192.168.0.1" \
-rc yellow "ping 192.168.1.1" -t example "ping example.com"
1$ parallel --lb -j0 --color --tag ping \
::: 127.0.0.1 192.168.0.1 192.168.1.1 example.com
2$ p "tail -f /var/log/httpd/access_log" \
-bc red "tail -f /var/log/httpd/error_log"
2$ cd /var/log/httpd;
parallel --lb --color --tag tail -f ::: access_log error_log
3$ p tail -f "some file" \& p tail -f "other file with space.txt"
3$ parallel --lb tail -f ::: 'some file' "other file with space.txt"
4$ p -t project1 "hg pull project1" -t project2 \
"hg pull project2" -t project3 "hg pull project3"
4$ parallel --lb hg pull ::: project{1..3}
@end verbatim
https://github.com/rudymatela/evenmoreutils/blob/master/man/p.1.adoc
(Last checked: 2022-04)
@node DIFFERENCES BETWEEN senechal AND GNU Parallel
@section DIFFERENCES BETWEEN senechal AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - - - - -
@anchor{I1 - - - - - - 2}
@item M1 - M3 - - M6
@anchor{M1 - M3 - - M6 5}
@item O1 - O3 O4 - - - x x -
@anchor{O1 - O3 O4 - - - x x -}
@item E1 - - - - - -
@anchor{E1 - - - - - - 9}
@item - - - - - - - - -
@anchor{- - - - - - - - - 17}
@item - -
@anchor{- - 19}
@end table
@strong{seneschal} only starts the first job after reading the last job, and
output from the first job is only printed after the last job finishes.
1 byte of output requites 3.5 bytes of RAM.
This makes it impossible to have a total output bigger than the
virtual memory.
Even though output is kept in RAM outputing is quite slow: 30 MB/s.
Output larger than 4 GB causes random problems - it looks like a race
condition.
This:
@verbatim
echo 1 | seneschal --prefix='yes `seq 1000`|head -c 1G' >/dev/null
@end verbatim
takes 4100(!) CPU seconds to run on a 64C64T server, but only 140 CPU
seconds on a 4C8T laptop. So it looks like @strong{seneschal} wastes a lot
of CPU time coordinating the CPUs.
Compare this to:
@verbatim
echo 1 | time -v parallel -N0 'yes `seq 1000`|head -c 1G' >/dev/null
@end verbatim
which takes 3-8 CPU seconds.
@menu
* EXAMPLES FROM seneschal README.md::
@end menu
@node EXAMPLES FROM seneschal README.md
@subsection EXAMPLES FROM seneschal README.md
@verbatim
1$ echo $REPOS | seneschal --prefix="cd {} && git pull"
# If $REPOS is newline separated
1$ echo "$REPOS" | parallel -k "cd {} && git pull"
# If $REPOS is space separated
1$ echo -n "$REPOS" | parallel -d' ' -k "cd {} && git pull"
COMMANDS="pwd
sleep 5 && echo boom
echo Howdy
whoami"
2$ echo "$COMMANDS" | seneschal --debug
2$ echo "$COMMANDS" | parallel -k -v
3$ ls -1 | seneschal --prefix="pushd {}; git pull; popd;"
3$ ls -1 | parallel -k "pushd {}; git pull; popd;"
# Or if current dir also contains files:
3$ parallel -k "pushd {}; git pull; popd;" ::: */
@end verbatim
https://github.com/TheWizardTower/seneschal
(Last checked: 2022-06)
@node DIFFERENCES BETWEEN async AND GNU Parallel 1
@section DIFFERENCES BETWEEN async AND GNU Parallel
Summary (see legend above):
@table @asis
@item x x x x x x x
@anchor{x x x x x x x}
@item - x x x x x
@anchor{- x x x x x}
@item x O2 O3 O4 O5 O6 - x x O10
@anchor{x O2 O3 O4 O5 O6 - x x O10}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 5}
@item - - - - - - - - -
@anchor{- - - - - - - - - 18}
@item S1 S2
@anchor{S1 S2 2}
@end table
@strong{async} works like @strong{sem}.
@menu
* EXAMPLES FROM async::
@end menu
@node EXAMPLES FROM async
@subsection EXAMPLES FROM async
@verbatim
1$ S="/tmp/example_socket"
async -s="$S" server --start
for i in {1..20}; do
# prints command output to stdout
async -s="$S" cmd -- bash -c "sleep 1 && echo test $i"
done
# wait until all commands are finished
async -s="$S" wait
1$ S="example_id"
# server not needed
for i in {1..20}; do
# prints command output to stdout
sem --bg --id "$S" -j100% "sleep 1 && echo test $i"
done
# wait until all commands are finished
sem --fg --id "$S" --wait
2$ # configure the server to run four commands in parallel
async -s="$S" server -j4
mkdir "/tmp/ex_dir"
for i in {21..40}; do
# redirects command output to /tmp/ex_dir/file*
async -s="$S" cmd -o "/tmp/ex_dir/file$i" -- \
bash -c "sleep 1 && echo test $i"
done
async -s="$S" wait
# stops server
async -s="$S" server --stop
2$ # starting server not needed
mkdir "/tmp/ex_dir"
for i in {21..40}; do
# redirects command output to /tmp/ex_dir/file*
sem --bg --id "$S" --results "/tmp/ex_dir/file$i{}" \
"sleep 1 && echo test $i"
done
sem --fg --id "$S" --wait
# there is no server to stop
@end verbatim
https://github.com/ctbur/async
(Last checked: 2023-01)
@node DIFFERENCES BETWEEN tandem AND GNU Parallel
@section DIFFERENCES BETWEEN tandem AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - I4 - - x
@anchor{- - - I4 - - x 1}
@item M1 - - - - M6
@anchor{M1 - - - - M6 3}
@item - - O3 - - - - x - -
@anchor{- - O3 - - - - x - -}
@item E1 - E3 - E5 - -
@anchor{E1 - E3 - E5 - -}
@item - - - - - - - - -
@anchor{- - - - - - - - - 19}
@item - -
@anchor{- - 20}
@end table
@strong{tandem} runs full commands in parallel. It is made for starting a
"server", running a job against the server, and when the job is done,
the server is killed.
More generally: it kills all jobs when the first job completes -
similar to '--halt now,done=1'.
@strong{tandem} silently discards some output. It is unclear exactly when
this happens. It looks like a race condition, because it varies for
each run.
@verbatim
$ tandem "seq 10000" | wc -l
6731 <- This should always be 10002
@end verbatim
@menu
* EXAMPLES FROM Demo::
* EXAMPLES FROM tandem -h::
* EXAMPLES FROM tandem's readme.md::
@end menu
@node EXAMPLES FROM Demo
@subsection EXAMPLES FROM Demo
@verbatim
tandem \
'php -S localhost:8000' \
'esbuild src/*.ts --bundle --outdir=dist --watch' \
'tailwind -i src/index.css -o dist/index.css --watch'
# Emulate tandem's behaviour
PARALLEL='--color --lb --halt now,done=1 --tagstring '
PARALLEL="$PARALLEL'"'{=s/ .*//; $_.=".".$app{$_}++;=}'"'"
export PARALLEL
parallel ::: \
'php -S localhost:8000' \
'esbuild src/*.ts --bundle --outdir=dist --watch' \
'tailwind -i src/index.css -o dist/index.css --watch'
@end verbatim
@node EXAMPLES FROM tandem -h
@subsection EXAMPLES FROM tandem -h
@verbatim
# Emulate tandem's behaviour
PARALLEL='--color --lb --halt now,done=1 --tagstring '
PARALLEL="$PARALLEL'"'{=s/ .*//; $_.=".".$app{$_}++;=}'"'"
export PARALLEL
1$ tandem 'sleep 5 && echo "hello"' 'sleep 2 && echo "world"'
1$ parallel ::: 'sleep 5 && echo "hello"' 'sleep 2 && echo "world"'
# '-t 0' fails. But '--timeout 0 works'
2$ tandem --timeout 0 'sleep 5 && echo "hello"' \
'sleep 2 && echo "world"'
2$ parallel --timeout 0 ::: 'sleep 5 && echo "hello"' \
'sleep 2 && echo "world"'
@end verbatim
@node EXAMPLES FROM tandem's readme.md
@subsection EXAMPLES FROM tandem's readme.md
@verbatim
# Emulate tandem's behaviour
PARALLEL='--color --lb --halt now,done=1 --tagstring '
PARALLEL="$PARALLEL'"'{=s/ .*//; $_.=".".$app{$_}++;=}'"'"
export PARALLEL
1$ tandem 'next dev' 'nodemon --quiet ./server.js'
1$ parallel ::: 'next dev' 'nodemon --quiet ./server.js'
2$ cat package.json
{
"scripts": {
"dev:php": "...",
"dev:js": "...",
"dev:css": "..."
}
}
tandem 'npm:dev:php' 'npm:dev:js' 'npm:dev:css'
# GNU Parallel uses bash functions instead
2$ cat package.sh
dev:php() { ... ; }
dev:js() { ... ; }
dev:css() { ... ; }
export -f dev:php dev:js dev:css
. package.sh
parallel ::: dev:php dev:js dev:css
3$ tandem 'npm:dev:*'
3$ compgen -A function | grep ^dev: | parallel
@end verbatim
For usage in Makefiles, include a copy of GNU Parallel with your
source using `parallel --embed`. This has the added benefit of also
working if access to the internet is down or restricted.
https://github.com/rosszurowski/tandem
(Last checked: 2023-01)
@node DIFFERENCES BETWEEN rust-parallel(aaronriekenberg) AND GNU Parallel
@section DIFFERENCES BETWEEN rust-parallel(aaronriekenberg) AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 I3 - - - -
@anchor{I1 I2 I3 - - - -}
@item - - - - - M6
@anchor{- - - - - M6 3}
@item O1 O2 O3 - O5 O6 - x - O10
@anchor{O1 O2 O3 - O5 O6 - x - O10}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 6}
@item - - - - - - - - -
@anchor{- - - - - - - - - 20}
@item - -
@anchor{- - 21}
@end table
@strong{rust-parallel} has a goal of only using Rust. It seems it is
impossible to call bash functions from the command line. You would
need to put these in a script.
Calling a script that misses the shebang line (#! as first line)
fails.
@menu
* EXAMPLES FROM rust-parallel's README.md::
@end menu
@node EXAMPLES FROM rust-parallel's README.md
@subsection EXAMPLES FROM rust-parallel's README.md
@verbatim
$ cat >./test <<EOL
echo hi
echo there
echo how
echo are
echo you
EOL
1$ cat test | rust-parallel -j5
1$ cat test | parallel -j5
2$ cat test | rust-parallel -j1
2$ cat test | parallel -j1
3$ head -100 /usr/share/dict/words | rust-parallel md5 -s
3$ head -100 /usr/share/dict/words | parallel md5 -s
4$ find . -type f -print0 | rust-parallel -0 gzip -f -k
4$ find . -type f -print0 | parallel -0 gzip -f -k
5$ head -100 /usr/share/dict/words |
awk '{printf "md5 -s %s\n", $1}' | rust-parallel
5$ head -100 /usr/share/dict/words |
awk '{printf "md5 -s %s\n", $1}' | parallel
6$ head -100 /usr/share/dict/words | rust-parallel md5 -s |
grep -i abba
6$ head -100 /usr/share/dict/words | parallel md5 -s |
grep -i abba
@end verbatim
https://github.com/aaronriekenberg/rust-parallel
(Last checked: 2023-01)
@node DIFFERENCES BETWEEN parallelium AND GNU Parallel
@section DIFFERENCES BETWEEN parallelium AND GNU Parallel
Summary (see legend above):
@table @asis
@item - I2 - - - - -
@anchor{- I2 - - - - -}
@item M1 - - - - M6
@anchor{M1 - - - - M6 4}
@item O1 - O3 - - - - x - -
@anchor{O1 - O3 - - - - x - -}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 7}
@item - - - - - - - - -
@anchor{- - - - - - - - - 21}
@item - -
@anchor{- - 22}
@end table
@strong{parallelium} merges standard output (stdout) and standard error
(stderr). The maximal output of a command is 8192 bytes. Bigger output
makes @strong{parallelium} go into an infinite loop.
In the input file for @strong{parallelium} you can define a tag, so that you
can select to run only these commands. A bit like a target in a
Makefile.
Progress is printed on standard output (stdout) prepended with '#'
with similar information as GNU @strong{parallel}'s @strong{--bar}.
@menu
* EXAMPLES::
@end menu
@node EXAMPLES
@subsection EXAMPLES
@verbatim
$ cat testjobs.txt
#tag common sleeps classA
(sleep 4.495;echo "job 000")
:
(sleep 2.587;echo "job 016")
#tag common sleeps classB
(sleep 0.218;echo "job 017")
:
(sleep 2.269;echo "job 040")
#tag common sleeps classC
(sleep 2.586;echo "job 041")
:
(sleep 1.626;echo "job 099")
#tag lasthalf, sleeps, classB
(sleep 1.540;echo "job 100")
:
(sleep 2.001;echo "job 199")
1$ parallelium -f testjobs.txt -l logdir -t classB,classC
1$ cat testjobs.txt |
parallel --plus --results logdir/testjobs.txt_{0#}.output \
'{= if(/^#tag /) { @tag = split/,|\s+/ }
(grep /^(classB|classC)$/, @tag) or skip =}'
@end verbatim
https://github.com/beomagi/parallelium
(Last checked: 2023-01)
@node DIFFERENCES BETWEEN forkrun AND GNU Parallel
@section DIFFERENCES BETWEEN forkrun AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - - - - I7
@anchor{I1 - - - - - I7 3}
@item - - - - - -
@anchor{- - - - - - 1}
@item - O2 O3 - O5 - - - - O10
@anchor{- O2 O3 - O5 - - - - O10}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 8}
@item - - - - - - - - -
@anchor{- - - - - - - - - 22}
@item - -
@anchor{- - 23}
@end table
@strong{forkrun} blocks if it receives fewer jobs than slots:
@verbatim
echo | forkrun -p 2 echo
@end verbatim
or when it gets some specific commands e.g.:
@verbatim
f() { seq "$@" | pv -qL 3; }
seq 10 | forkrun f
@end verbatim
It is not clear why.
It is faster than GNU @strong{parallel} (overhead: 1.2 ms/job vs 3 ms/job),
but way slower than @strong{parallel-bash} (0.059 ms/job).
Running jobs cannot be stopped by pressing CTRL-C.
@strong{-k} is supposed to keep the order but fails on the MIX testing
example below. If used with @strong{-k} it caches output in RAM.
If @strong{forkrun} is killed, it leaves temporary files in
@strong{/tmp/.forkrun.*} that has to be cleaned up manually.
@menu
* EXAMPLES 1::
@end menu
@node EXAMPLES 1
@subsection EXAMPLES
@verbatim
1$ time find ./ -type f |
forkrun -l512 -- sha256sum 2>/dev/null | wc -l
1$ time find ./ -type f |
parallel -j28 -m -- sha256sum 2>/dev/null | wc -l
2$ time find ./ -type f |
forkrun -l512 -k -- sha256sum 2>/dev/null | wc -l
2$ time find ./ -type f |
parallel -j28 -k -m -- sha256sum 2>/dev/null | wc -l
@end verbatim
https://github.com/jkool702/forkrun
(Last checked: 2023-02)
@node DIFFERENCES BETWEEN parallel-sh AND GNU Parallel
@section DIFFERENCES BETWEEN parallel-sh AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - I4 - - -
@anchor{I1 I2 - I4 - - -}
@item M1 - - - - M6
@anchor{M1 - - - - M6 5}
@item O1 O2 O3 - O5 O6 - - - O10
@anchor{O1 O2 O3 - O5 O6 - - - O10}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 9}
@item - - - - - - - - -
@anchor{- - - - - - - - - 23}
@item - -
@anchor{- - 24}
@end table
@strong{parallel-sh} buffers in RAM. The buffering data takes O(n^1.5) time:
2MB=0.107s 4MB=0.175s 8MB=0.342s 16MB=0.766s 32MB=2.2s 64MB=6.7s
128MB=20s 256MB=64s 512MB=248s 1024MB=998s 2048MB=3756s
It limits the practical usability to jobs outputting < 256 MB. GNU
@strong{parallel} buffers on disk, yet is faster for jobs with outputs > 16
MB and is only limited by the free space in $TMPDIR.
@strong{parallel-sh} can kill running jobs if a job fails (Similar to
@strong{--halt now,fail=1}).
@menu
* EXAMPLES 2::
@end menu
@node EXAMPLES 2
@subsection EXAMPLES
@verbatim
1$ parallel-sh "sleep 2 && echo first" "sleep 1 && echo second"
1$ parallel ::: "sleep 2 && echo first" "sleep 1 && echo second"
2$ cat /tmp/commands
sleep 2 && echo first
sleep 1 && echo second
2$ parallel-sh -f /tmp/commands
2$ parallel -a /tmp/commands
3$ echo -e 'sleep 2 && echo first\nsleep 1 && echo second' |
parallel-sh
3$ echo -e 'sleep 2 && echo first\nsleep 1 && echo second' |
parallel
@end verbatim
https://github.com/thyrc/parallel-sh
(Last checked: 2023-04)
@node DIFFERENCES BETWEEN bash-parallel AND GNU Parallel
@section DIFFERENCES BETWEEN bash-parallel AND GNU Parallel
Summary (see legend above):
@table @asis
@item - I2 - - - - I7
@anchor{- I2 - - - - I7}
@item M1 - M3 - M5 M6
@anchor{M1 - M3 - M5 M6}
@item - O2 O3 - - O6 - O8 - O10
@anchor{- O2 O3 - - O6 - O8 - O10}
@item E1 - - - - - -
@anchor{E1 - - - - - - 10}
@item - - - - - - - - -
@anchor{- - - - - - - - - 24}
@item - -
@anchor{- - 25}
@end table
@strong{bash-parallel} is not as much a command as it is a shell script that
you have to alter. It requires you to change the shell function
process_job that runs the job, and set $MAX_POOL_SIZE to the number of
jobs to run in parallel.
It is half as fast as GNU @strong{parallel} for short jobs.
https://github.com/thilinaba/bash-parallel
(Last checked: 2023-05)
@node DIFFERENCES BETWEEN PaSH AND GNU Parallel
@section DIFFERENCES BETWEEN PaSH AND GNU Parallel
Summary (see legend above): N/A
@strong{pash} is quite different from GNU @strong{parallel}. It is not a general
parallelizer. It takes a shell script and analyses it and parallelizes
parts of it by replacing the parts with commands that will give the same
result.
This will replace @strong{sort} with a command that does pretty much the
same as @strong{parsort --parallel=8} (except somewhat slower):
@verbatim
pa.sh --width 8 -c 'cat bigfile | sort'
@end verbatim
However, even a simple change will confuse @strong{pash} and you will get no
parallelization:
@verbatim
pa.sh --width 8 -c 'mysort() { sort; }; cat bigfile | mysort'
pa.sh --width 8 -c 'cat bigfile | sort | md5sum'
@end verbatim
From the source it seems @strong{pash} only looks at: awk cat col comm cut
diff grep head mkfifo mv rm sed seq sort tail tee tr uniq wc xargs
For pipelines where these commands are bottlenecks, it might be worth
testing if @strong{pash} is faster than GNU @strong{parallel}.
@strong{pash} does not respect $TMPDIR but always uses /tmp. If @strong{pash} dies
unexpectantly it does not clean up.
https://github.com/binpash/pash
(Last checked: 2023-05)
@node DIFFERENCES BETWEEN korovkin-parallel AND GNU Parallel
@section DIFFERENCES BETWEEN korovkin-parallel AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 - - - - - -
@anchor{I1 - - - - - - 3}
@item M1 - - - - M6
@anchor{M1 - - - - M6 6}
@item - - O3 - - - - x x -
@anchor{- - O3 - - - - x x -}
@item E1 - - - - - -
@anchor{E1 - - - - - - 11}
@item R1 - - - - R6 x x -
@anchor{R1 - - - - R6 x x -}
@item - -
@anchor{- - 26}
@end table
@strong{korovkin-parallel} prepends all lines with some info.
The output is colored with 6 color combinations, so job 1 and 7 will
get the same color.
You can get similar output with:
@verbatim
(echo ...) |
parallel --color -j 10 --lb --tagstring \
'[l:{#}:{=$_=sprintf("%7.03f",::now()-$^T)=} {=$_=hh_mm_ss($^T)=} {%}]'
@end verbatim
Lines longer than 8192 chars are broken into lines shorter than
8192. @strong{korovkin-parallel} loses the last char for lines exactly 8193
chars long.
Short lines from different jobs do not mix, but long lines do:
@verbatim
fun() {
perl -e '$a="'$1'"x1000000; for(1..'$2') { print $a };';
echo;
}
export -f fun
(echo fun a 100;echo fun b 100) | korovkin-parallel | tr -s abcdef
# Compare to:
(echo fun a 100;echo fun b 100) | parallel | tr -s abcdef
@end verbatim
There should be only one line of a's and one line of b's.
Just like GNU @strong{parallel} @strong{korovkin-parallel} offers a master/slave
model, so workers on other servers can do some of the tasks. But
contrary to GNU @strong{parallel} you must manually start workers on these
servers. The communication is neither authenticated nor encrypted.
It caches output in RAM: a 1GB line uses ~2.5GB RAM
https://github.com/korovkin/parallel
(Last checked: 2023-07)
@node DIFFERENCES BETWEEN xe AND GNU Parallel
@section DIFFERENCES BETWEEN xe AND GNU Parallel
Summary (see legend above):
@table @asis
@item I1 I2 - I4 - - I7
@anchor{I1 I2 - I4 - - I7}
@item M1 - M3 M4 - M6
@anchor{M1 - M3 M4 - M6}
@item - O2 O3 - O5 O6 - O8 - O10
@anchor{- O2 O3 - O5 O6 - O8 - O10}
@item E1 - - E4 - - -
@anchor{E1 - - E4 - - - 10}
@item - - - - - - - - -
@anchor{- - - - - - - - - 25}
@item - -
@anchor{- - 27}
@end table
@strong{xe} has a peculiar limitation:
@verbatim
echo /bin/echo | xe {} OK
echo echo | xe /bin/{} fails
@end verbatim
@menu
* EXAMPLES 3::
@end menu
@node EXAMPLES 3
@subsection EXAMPLES
Compress all .c files in the current directory, using all CPU cores:
@verbatim
1$ xe -a -j0 gzip -- *.c
1$ parallel gzip ::: *.c
@end verbatim
Remove all empty files, using lr(1):
@verbatim
2$ lr -U -t 'size == 0' | xe -N0 rm
2$ lr -U -t 'size == 0' | parallel -X rm
@end verbatim
Convert .mp3 to .ogg, using all CPU cores:
@verbatim
3$ xe -a -j0 -s 'ffmpeg -i "${1}" "${1%.mp3}.ogg"' -- *.mp3
3$ parallel ffmpeg -i {} {.}.ogg ::: *.mp3
@end verbatim
Same, using percent rules:
@verbatim
4$ xe -a -j0 -p %.mp3 ffmpeg -i %.mp3 %.ogg -- *.mp3
4$ parallel --rpl '% s/\.mp3// or skip' ffmpeg -i %.mp3 %.ogg ::: *.mp3
@end verbatim
Similar, but hiding output of ffmpeg, instead showing spawned jobs:
@verbatim
5$ xe -ap -j0 -vvq '%.{m4a,ogg,opus}' ffmpeg -y -i {} out/%.mp3 -- *
5$ parallel -v --rpl '% s/\.(m4a|ogg|opus)// or skip' \
ffmpeg -y -i {} out/%.mp3 '2>/dev/null' ::: *
5$ parallel -v ffmpeg -y -i {} out/{.}.mp3 '2>/dev/null' ::: *
@end verbatim
https://github.com/leahneukirchen/xe
(Last checked: 2023-08)
@node DIFFERENCES BETWEEN sp AND GNU Parallel
@section DIFFERENCES BETWEEN sp AND GNU Parallel
Summary (see legend above):
@table @asis
@item - - - I4 - - -
@anchor{- - - I4 - - - 2}
@item M1 - M3 - - M6
@anchor{M1 - M3 - - M6 6}
@item - O2 O3 - O5 (O6) - x x O10
@anchor{- O2 O3 - O5 (O6) - x x O10}
@item E1 - - - - - -
@anchor{E1 - - - - - - 12}
@item - - - - - - - - -
@anchor{- - - - - - - - - 26}
@item - -
@anchor{- - 28}
@end table
@strong{sp} has very few options.
It can either be used like:
@verbatim
sp command {} option :: arg1 arg2 arg3
@end verbatim
which is similar to:
@verbatim
parallel command {} option ::: arg1 arg2 arg3
@end verbatim
Or:
@verbatim
sp command1 :: "command2 -option" :: "command3 foo bar"
@end verbatim
which is similar to:
@verbatim
parallel ::: command1 "command2 -option" "command3 foo bar"
@end verbatim
@strong{sp} deals badly with too many commands: This causes @strong{sp} to run out
of file handles and gives data loss.
For each command that fails, @strong{sp} will print an error message on
stderr (standard error).
You cannot used exported shell functions as commands.
@menu
* EXAMPLES 4::
@end menu
@node EXAMPLES 4
@subsection EXAMPLES
@verbatim
1$ sp echo {} :: 1 2 3
1$ parallel echo {} ::: 1 2 3
2$ sp echo {} {} :: 1 2 3
2$ parallel echo {} {} :: 1 2 3
3$ sp echo 1 :: echo 2 :: echo 3
3$ parallel ::: 'echo 1' 'echo 2' 'echo 3'
4$ sp a foo bar :: "b 'baz bar'" :: c
4$ parallel ::: 'a foo bar' "b 'baz bar'" :: c
@end verbatim
https://github.com/SergioBenitez/sp
(Last checked: 2023-10)
@node Todo
@section Todo
https://github.com/justanhduc/task-spooler
https://manpages.ubuntu.com/manpages/xenial/man1/tsp.1.html
https://www.npmjs.com/package/concurrently
http://code.google.com/p/push/ (cannot compile)
https://github.com/krashanoff/parallel
https://github.com/Nukesor/pueue
https://arxiv.org/pdf/2012.15443.pdf KumQuat
https://github.com/JeiKeiLim/simple_distribute_job
https://github.com/reggi/pkgrun - not obvious how to use
https://github.com/benoror/better-npm-run - not obvious how to use
https://github.com/bahmutov/with-package
https://github.com/flesler/parallel
https://github.com/Julian/Verge
https://vicerveza.homeunix.net/~viric/soft/ts/
https://github.com/chapmanjacobd/que
@node TESTING OTHER TOOLS
@chapter TESTING OTHER TOOLS
There are certain issues that are very common on parallelizing
tools. Here are a few stress tests. Be warned: If the tool is badly
coded it may overload your machine.
@menu
* MIX@asis{:} Output mixes::
* STDERRMERGE@asis{:} Stderr is merged with stdout::
* RAM@asis{:} Output limited by RAM::
* DISKFULL@asis{:} Incomplete data if /tmp runs full::
* CLEANUP@asis{:} Leaving tmp files at unexpected death::
* SPCCHAR@asis{:} Dealing badly with special file names.::
* COMPOSED@asis{:} Composed commands do not work::
* ONEREP@asis{:} Only one replacement string allowed::
* INPUTSIZE@asis{:} Length of input should not be limited::
* NUMWORDS@asis{:} Speed depends on number of words::
* 4GB@asis{:} Output with a line > 4GB should be OK::
@end menu
@node MIX: Output mixes
@section MIX: Output mixes
Output from 2 jobs should not mix. If the output is not used, this
does not matter; but if the output @emph{is} used then it is important
that you do not get half a line from one job followed by half a line
from another job.
If the tool does not buffer, output will most likely mix now and then.
This test stresses whether output mixes.
@verbatim
#!/bin/bash
paralleltool="parallel -j 30"
cat <<-EOF > mycommand
#!/bin/bash
# If a, b, c, d, e, and f mix: Very bad
perl -e 'print STDOUT "a"x3000_000," "'
perl -e 'print STDERR "b"x3000_000," "'
perl -e 'print STDOUT "c"x3000_000," "'
perl -e 'print STDERR "d"x3000_000," "'
perl -e 'print STDOUT "e"x3000_000," "'
perl -e 'print STDERR "f"x3000_000," "'
echo
echo >&2
EOF
chmod +x mycommand
# Run 30 jobs in parallel
seq 30 |
$paralleltool ./mycommand > >(tr -s abcdef) 2> >(tr -s abcdef >&2)
# 'a c e' and 'b d f' should always stay together
# and there should only be a single line per job
@end verbatim
@node STDERRMERGE: Stderr is merged with stdout
@section STDERRMERGE: Stderr is merged with stdout
Output from stdout and stderr should not be merged, but kept separated.
This test shows whether stdout is mixed with stderr.
@verbatim
#!/bin/bash
paralleltool="parallel -j0"
cat <<-EOF > mycommand
#!/bin/bash
echo stdout
echo stderr >&2
echo stdout
echo stderr >&2
EOF
chmod +x mycommand
# Run one job
echo |
$paralleltool ./mycommand > stdout 2> stderr
cat stdout
cat stderr
@end verbatim
@node RAM: Output limited by RAM
@section RAM: Output limited by RAM
Some tools cache output in RAM. This makes them extremely slow if the
output is bigger than physical memory and crash if the output is
bigger than the virtual memory.
@verbatim
#!/bin/bash
paralleltool="parallel -j0"
cat <<'EOF' > mycommand
#!/bin/bash
# Generate 1 GB output
yes "`perl -e 'print \"c\"x30_000'`" | head -c 1G
EOF
chmod +x mycommand
# Run 20 jobs in parallel
# Adjust 20 to be > physical RAM and < free space on /tmp
seq 20 | time $paralleltool ./mycommand | wc -c
@end verbatim
@node DISKFULL: Incomplete data if /tmp runs full
@section DISKFULL: Incomplete data if /tmp runs full
If caching is done on disk, the disk can run full during the run. Not
all programs discover this. GNU Parallel discovers it, if it stays
full for at least 2 seconds.
@verbatim
#!/bin/bash
paralleltool="parallel -j0"
# This should be a dir with less than 100 GB free space
smalldisk=/tmp/shm/parallel
TMPDIR="$smalldisk"
export TMPDIR
max_output() {
# Force worst case scenario:
# Make GNU Parallel only check once per second
sleep 10
# Generate 100 GB to fill $TMPDIR
# Adjust if /tmp is bigger than 100 GB
yes | head -c 100G >$TMPDIR/$$
# Generate 10 MB output that will not be buffered
# due to full disk
perl -e 'print "X"x10_000_000' | head -c 10M
echo This part is missing from incomplete output
sleep 2
rm $TMPDIR/$$
echo Final output
}
export -f max_output
seq 10 | $paralleltool max_output | tr -s X
@end verbatim
@node CLEANUP: Leaving tmp files at unexpected death
@section CLEANUP: Leaving tmp files at unexpected death
Some tools do not clean up tmp files if they are killed. If the tool
buffers on disk, they may not clean up, if they are killed.
@verbatim
#!/bin/bash
paralleltool=parallel
ls /tmp >/tmp/before
seq 10 | $paralleltool sleep &
pid=$!
# Give the tool time to start up
sleep 1
# Kill it without giving it a chance to cleanup
kill -9 $!
# Should be empty: No files should be left behind
diff <(ls /tmp) /tmp/before
@end verbatim
@node SPCCHAR: Dealing badly with special file names.
@section SPCCHAR: Dealing badly with special file names.
It is not uncommon for users to create files like:
@verbatim
My brother's 12" *** record (costs $$$).jpg
@end verbatim
Some tools break on this.
@verbatim
#!/bin/bash
paralleltool=parallel
touch "My brother's 12\" *** record (costs \$\$\$).jpg"
ls My*jpg | $paralleltool ls -l
@end verbatim
@node COMPOSED: Composed commands do not work
@section COMPOSED: Composed commands do not work
Some tools require you to wrap composed commands into @strong{bash -c}.
@verbatim
echo bar | $paralleltool echo foo';' echo {}
@end verbatim
@node ONEREP: Only one replacement string allowed
@section ONEREP: Only one replacement string allowed
Some tools can only insert the argument once.
@verbatim
echo bar | $paralleltool echo {} foo {}
@end verbatim
@node INPUTSIZE: Length of input should not be limited
@section INPUTSIZE: Length of input should not be limited
Some tools limit the length of the input lines artificially with no good
reason. GNU @strong{parallel} does not:
@verbatim
perl -e 'print "foo."."x"x100_000_000' | parallel echo {.}
@end verbatim
GNU @strong{parallel} limits the command to run to 128 KB due to execve(1):
@verbatim
perl -e 'print "x"x131_000' | parallel echo {} | wc
@end verbatim
@node NUMWORDS: Speed depends on number of words
@section NUMWORDS: Speed depends on number of words
Some tools become very slow if output lines have many words.
@verbatim
#!/bin/bash
paralleltool=parallel
cat <<-EOF > mycommand
#!/bin/bash
# 10 MB of lines with 1000 words
yes "`seq 1000`" | head -c 10M
EOF
chmod +x mycommand
# Run 30 jobs in parallel
seq 30 | time $paralleltool -j0 ./mycommand > /dev/null
@end verbatim
@node 4GB: Output with a line > 4GB should be OK
@section 4GB: Output with a line > 4GB should be OK
@verbatim
#!/bin/bash
paralleltool="parallel -j0"
cat <<-EOF > mycommand
#!/bin/bash
perl -e '\$a="a"x1000_000; for(1..5000) { print \$a }'
EOF
chmod +x mycommand
# Run 1 job
seq 1 | $paralleltool ./mycommand | LC_ALL=C wc
@end verbatim
@node AUTHOR
@chapter AUTHOR
When using GNU @strong{parallel} for a publication please cite:
O. Tange (2011): GNU Parallel - The Command-Line Power Tool, ;login:
The USENIX Magazine, February 2011:42-47.
This helps funding further development; and it won't cost you a cent.
If you pay 10000 EUR you should feel free to use GNU Parallel without citing.
Copyright (C) 2007-10-18 Ole Tange, http://ole.tange.dk
Copyright (C) 2008-2010 Ole Tange, http://ole.tange.dk
Copyright (C) 2010-2023 Ole Tange, http://ole.tange.dk and Free
Software Foundation, Inc.
Parts of the manual concerning @strong{xargs} compatibility is inspired by
the manual of @strong{xargs} from GNU findutils 4.4.2.
@node LICENSE
@chapter LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
at your option any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
@menu
* Documentation license I::
* Documentation license II::
@end menu
@node Documentation license I
@section Documentation license I
Permission is granted to copy, distribute and/or modify this
documentation under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, with no Front-Cover Texts, and
with no Back-Cover Texts. A copy of the license is included in the
file LICENSES/GFDL-1.3-or-later.txt.
@node Documentation license II
@section Documentation license II
You are free:
@table @asis
@item @strong{to Share}
@anchor{@strong{to Share}}
to copy, distribute and transmit the work
@item @strong{to Remix}
@anchor{@strong{to Remix}}
to adapt the work
@end table
Under the following conditions:
@table @asis
@item @strong{Attribution}
@anchor{@strong{Attribution}}
You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or
your use of the work).
@item @strong{Share Alike}
@anchor{@strong{Share Alike}}
If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same, similar or a compatible
license.
@end table
With the understanding that:
@table @asis
@item @strong{Waiver}
@anchor{@strong{Waiver}}
Any of the above conditions can be waived if you get permission from
the copyright holder.
@item @strong{Public Domain}
@anchor{@strong{Public Domain}}
Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.
@item @strong{Other Rights}
@anchor{@strong{Other Rights}}
In no way are any of the following rights affected by the license:
@itemize
@item Your fair dealing or fair use rights, or other applicable
copyright exceptions and limitations;
@item The author's moral rights;
@item Rights other persons may have either in the work itself or in
how the work is used, such as publicity or privacy rights.
@end itemize
@end table
@table @asis
@item @strong{Notice}
@anchor{@strong{Notice}}
For any reuse or distribution, you must make clear to others the
license terms of this work.
@end table
A copy of the full license is included in the file as
LICENCES/CC-BY-SA-4.0.txt
@node DEPENDENCIES
@chapter DEPENDENCIES
GNU @strong{parallel} uses Perl, and the Perl modules Getopt::Long,
IPC::Open3, Symbol, IO::File, POSIX, and File::Temp. For remote usage
it also uses rsync with ssh.
@node SEE ALSO
@chapter SEE ALSO
@strong{find}(1), @strong{xargs}(1), @strong{make}(1), @strong{pexec}(1), @strong{ppss}(1),
@strong{xjobs}(1), @strong{prll}(1), @strong{dxargs}(1), @strong{mdm}(1)
@bye
|